To evaluate whether radiomic features from contrast-enhanced computed tomography (CE-CT) can identify DNA mismatch repair deficient (MMR-D) and/or tumor mutational burden-high (TMB-H) endometrial cancers (ECs). Patients who underwent targeted massively parallel sequencing of primary ECs between 2014 and 2018 and preoperative CE-CT were included (n = 150). Molecular subtypes of EC were assigned using DNA polymerase epsilon (POLE) hotspot mutations and immunohistochemistry-based p53 and MMR protein expression. TMB was derived from sequencing, with > 15.5 mutations-per-megabase as a cut-point to define TMB-H tumors. After radiomic feature extraction and selection, radiomic features and clinical variables were processed with the recursive feature elimination random forest classifier. Classification models constructed using the training dataset (n = 105) were then validated on the holdout test dataset (n = 45). Integrated radiomic-clinical classification distinguished MMR-D from copy number (CN)-low-like and CN-high-like ECs with an area under the receiver operating characteristic curve (AUROC) of 0.78 (95% CI 0.58-0.91). The model further differentiated TMB-H from TMB-low (TMB-L) tumors with an AUROC of 0.87 (95% CI 0.73-0.95). Peritumoral-rim radiomic features were most relevant to both classifications (p ≤ 0.044). Radiomic analysis achieved moderate accuracy in identifying MMR-D and TMB-H ECs directly from CE-CT. Radiomics may provide an adjunct tool to molecular profiling, especially given its potential advantage in the setting of intratumor heterogeneity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575573PMC
http://dx.doi.org/10.1038/s41598-020-72475-9DOI Listing

Publication Analysis

Top Keywords

radiomic features
12
contrast-enhanced computed
8
computed tomography
8
endometrial cancers
8
radiomic
5
machine learning-based
4
learning-based prediction
4
prediction microsatellite
4
microsatellite instability
4
instability high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!