Quantum engineering using photonic structures offer new capabilities for atom-photon interactions for quantum optics and atomic physics, which could eventually lead to integrated quantum devices. Despite the rapid progress in the variety of structures, coherent excitation of the motional states of atoms in a photonic waveguide using guided modes has yet to be demonstrated. Here, we use the waveguide mode of a hollow-core photonic crystal fibre to manipulate the mechanical Fock states of single atoms in a harmonic potential inside the fibre. We create a large array of Schrödinger cat states, a quintessential feature of quantum physics and a key element in quantum information processing and metrology, of approximately 15000 atoms along the fibre by entangling the electronic state with the coherent harmonic oscillator state of each individual atom. Our results provide a useful step for quantum information and simulation with a wide range of photonic waveguide systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575543 | PMC |
http://dx.doi.org/10.1038/s41467-020-19030-2 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
Computed tomography (CT) imaging has emerge as an effective medical diagnostic technique due to its rapid and 3D imaging capabilities, often employing indirect imaging methods through scintillator materials. Arraying scintillators that can confine light scattering to enable high-resolution CT imaging remains an area of ongoing exploration for emerging perovskite scintillators. Here an anti-scattering cesium lead bromide (CsPbBr) scintillator array embedded within a polyurethane acrylate matrix for CT imaging using a cost-effective solution-processed method is reported.
View Article and Find Full Text PDFNano Converg
January 2025
Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore, 117576, Singapore.
Ferroelectric capacitive memories (FCMs) utilize ferroelectric polarization to modulate device capacitance for data storage, providing a new technological pathway to achieve two-terminal non-destructive-read ferroelectric memory. In contrast to the conventional resistive memories, the unique capacitive operation mechanism of FCMs transfers the memory reading and in-memory computing to charge domain, offering ultra-high energy efficiency, better compatibility to large-scale array, and negligible read disturbance. In recent years, extensive research has been conducted on FCMs.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China.
Bioinspired supramolecular architectonics is attracting increasing interest due to their flexible organization and multifunctionality. However, state-of-the-art bioinspired architectonics generally take place in solvent-based circumstance, thus leading to achieving precise control over the self-assembly remains challenging. Moreover, the intrinsic difficulty of ordering the bio-organic self-assemblies into stable large-scale arrays in the liquid environment for engineering devices severely restricts their extensive applications.
View Article and Find Full Text PDFQuant Imaging Med Surg
January 2025
Department of Ophthalmology, Key Lab of Ocular Fundus Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Age-related macular degeneration (AMD) represents a significant clinical concern, particularly in aging populations, and recent advancements in artificial intelligence (AI) have catalyzed substantial research interest in this domain. Despite the growing body of literature, there remains a need for a comprehensive, quantitative analysis to delineate key trends and emerging areas in the field of AI applications in AMD. This bibliometric analysis sought to systematically evaluate the landscape of AI-focused research on AMD to illuminate publication patterns, influential contributors, and focal research trends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!