Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrode characteristics are crucial in transcranial direct current stimulation (tDCS) since electrode design and placement determine the cortical area being modulated, current density and spatial resolution of stimulation. Early research on tDCS sought to determine optimal parameters for stimulation by specifying maximum current, duration and sizes of electrodes. Further research focused on determining efficient ways to deliver stimulation to targeted regions on the cortex with minimal discomfort to the user by altering electrode size, placement, shape and material. This review aims to give an insight on the main characteristics of electrodes used in tDCS and on the variability found in electrode parameters and placements from tDCS to high definition tDCS (HD-tDCS) applications and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medengphy.2020.09.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!