Replacement of pancreatic β-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic β-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated β-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse β-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks ( = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2020.0179DOI Listing

Publication Analysis

Top Keywords

balb/c mice
8
prevascularized retrievable
4
retrievable hybrid
4
hybrid implant
4
implant enhance
4
enhance function
4
function subcutaneous
4
subcutaneous encapsulated
4
encapsulated islets
4
islets replacement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!