Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing forest harvesting regimes that mimic natural forest dynamics requires knowledge on typical species behaviors and how they respond to environmental conditions. Species regeneration and survival after disturbance depends on a species' life history traits. Therefore, forest succession determines the extent to which forest communities are able to cope with environmental change. The aim of this review was to (i) review the life history dynamics of hemi-boreal tree species in the context of ecological succession, and (ii) categorize each of these tree species into one of four successional development groups (gap colonizers, gap competitors, forest colonizers, or forest competitors). To do this we embraced the super-organism approach to plant communities using their life history dynamics and traits. Our review touches on the importance and vulnerability of these four types of successional groups, their absence and presence in the community, and how they can be used as a core component to evaluate if the development of the community is progressing towards the restoration of the climatic climax. Applying a theoretical framework to generate ideas, we suggest that forests should be managed to maintain environmental conditions that support the natural variety and sequence of tree species' life histories by promoting genetic invariance and to help secure ecosystem resilience for the future. This could be achieved by employing harvesting methods that emulate natural disturbances and regeneration programs that contribute to maintenance of the four successional groups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603053 | PMC |
http://dx.doi.org/10.3390/plants9101381 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!