The possibility of graphene synthesis (the bottom-up approach) in plasma and the effective control of the morphology and electrical properties of graphene-based layers were demonstrated. Graphene flakes were grown in a plasma jet generated by a direct current plasma torch with helium and argon as the plasma-forming gases. In the case of argon plasma, the synthesized graphene flakes were relatively thick (2-6 nm) and non-conductive. In helium plasma, for the first time, graphene with a predominance of monolayer flakes and high conductivity was grown in a significant amount using an industrial plasma torch. One-dimensional (1D) flow modeling shows that the helium plasma is a less charged environment providing the formation of thinner graphene flakes with low defect density. These flakes might be used for a water-based suspension of the graphene with PEDOT:PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate) composite to create the structures employing the 2D printing technologies. Good structural quality, low layer resistance, and good mechanical strength combined with the ability to obtain a large amount of the graphene powder, and to control the parameters of the synthesized particles make this material promising for various applications and, above all, for sensors and other devices for flexible electronics and the Internet of things ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602952PMC
http://dx.doi.org/10.3390/nano10102050DOI Listing

Publication Analysis

Top Keywords

graphene flakes
16
graphene
8
plasma
8
plasma torch
8
helium plasma
8
flakes
5
flakes electronic
4
electronic applications
4
applications plasma
4
plasma jet-assisted
4

Similar Publications

Assembly of graphene oxide reduced graphene oxide in a phospholipid monolayer at air-water interfaces.

Phys Chem Chem Phys

January 2025

Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.

Graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), have propelled advancements in biosensor research owing to their unique physicochemical and electronic characteristics. To ensure their safe and effective utilization in biological environments, it is crucial to understand how these graphene-based nanomaterials (GNMs) interact with a biological milieu. The present study depicts GNM-induced structural changes in a self-assembled phospholipid monolayer formed at an air-water interface that can be considered to represent one of the leaflets of a cellular membrane.

View Article and Find Full Text PDF

Colloidal properties of nanoparticles are intricately linked to their morphology. Traditionally, achieving high-concentration dispersions of two-dimensional (2D) nanosheets has proven challenging as they tend to agglomerate or re-stack under increased surface contact and Van der Waals attraction. Here, we unveil an excluded volume effect enabled by 2D morphology, which can be coupled with electrostatic repulsion to synthesize high-concentration aqueous graphene dispersions.

View Article and Find Full Text PDF

Topological Insulators (TIs) are promising platforms for Quantum Technology due to their topologically protected surface states (TSS). Plasmonic excitations in TIs are especially interesting both as a method of characterisation for TI heterostructures, and as potential routes to couple optical and spin signals in low-loss devices. Since the electrical properties of the TI surface are critical, tuning TI surfaces is a vital step in developing TI structures that can be applied in real world plasmonic devices.

View Article and Find Full Text PDF

The interfacial adhesion between transition metal dichalcogenides (TMDs) and the growth substrate significantly influences the employment of flakes in various applications. Most previous studies have focused on MoS and graphene, particularly their interaction with SiO/Si substrates. In this work, the adhesion strength of CVD-grown bilayer WS is directly measured using the nano scratch technique on three different substrates-Sapphire, SiO/Si, and fused quartz.

View Article and Find Full Text PDF

Synthesis of ultra-large diameter graphene oxide flakes from natural flake graphite.

Heliyon

December 2024

College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.

Graphene and its derivatives are widely used in various fields due to their unique two-dimensional lamellar structure. This study aims to synthesize ultra-large graphene oxide (GO) sheets from natural flake graphite and investigate the factors influencing their size. Using a two-intercalation method based on the modified Hummers' method, we address the challenge of intercalating large-diameter graphene oxide by employing a secondary intercalation technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!