Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ni-Co-Al, Ni-Cu-Al and Co-Cu-Al ternary oxide catalysts, with a fixed 5 wt% transition metal loading, were prepared by the microwave-assisted solution combustion method and tested in CO oxidation. The bulk and surface properties of the catalysts were investigated, using XRD, N adsorption-desorption, SEM, XPS and TEM techniques. XRD, XPS and TEM results revealed that nickel and cobalt were present as spinels on the surface and in the bulk. Differently, copper was preferentially present in "bulk-like" CuO-segregated phases. No interaction between the couples of transition metal species was detected, and the introduction of Cu-containing precursors into the Ni-Al or Co-Al combustion systems was not effective in preventing the formation of NiAlO and CoAlO spinels in the Ni- or Co-containing catalysts. Copper-containing catalysts were the most active, indicating that copper oxides are the effective active species for improving the CO oxidation activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602852 | PMC |
http://dx.doi.org/10.3390/ma13204607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!