To investigate the effect of polyvinylpyrrolidone (PVP) addition and consequently porosity, two different sets of membranes are manufactured, since PVP is a widely used poring agent which has an impact on the mechanical properties of the membrane material. The first set (PAN 1) includes polyacrylonitrile (PAN) and the necessary solvent while the second set (PAN 2) is made of PAN and PVP. These membranes are put through several characterisation processes including tensile testing. The obtained data are used to model the static behaviour of the membranes with different geometries but similar loading and boundary conditions that represent their operating conditions. This modelling process is undertaken by using the finite element method. The main idea is to investigate how geometry affects the load-carrying capacity of the membranes. Alongside membrane modelling, their materials are modelled with representative elements with hexagonal and rectangular pore arrays (RE) to understand the impact of porosity on the mechanical properties. Exploring the results, the best geometry is found as the elliptic membrane with the aspect ratio 4 and the better RE as the hexagonal array which can predict the elastic properties with an approximate error of 12%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602745 | PMC |
http://dx.doi.org/10.3390/polym12102378 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Physics, Indian Institute of Technology Delhi (IITD), Delhi 110016, India.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are considered to be the most important processes in metal-air batteries and regenerative fuel cell devices. Metal-organic polymers are attracting interest as promising precursors of advanced metal/carbon electrocatalysts because of their hierarchical porous structure along with the integrated metal-carbon framework. We developed carbon-coated CNTs with Ni/Fe and Cu/Fe as active sites.
View Article and Find Full Text PDFLangmuir
January 2025
Gulliver, CNRS, ESPCI Paris, Université PSL, Paris 75005, France.
We experimentally study the formation of surface patterns in grafted hydrogel films of nanometer-to-micrometer thickness during imbibition-driven swelling followed by evaporation-driven shrinking. Creases are known to form at the hydrogel surface during swelling; the wavelength of the creasing pattern is proportional to the initial thickness of the hydrogel film with a logarithmic correction that depends on microscopic properties of the hydrogel. We find that, although the characteristic wavelength of the pattern is determined during swelling, the surface morphology can be significantly influenced by evaporation-induced shrinking.
View Article and Find Full Text PDFSci Adv
January 2025
Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499, South Korea.
Highly packable and deployable electronics offer a variety of advantages in electronics and robotics by facilitating spatial efficiency. These electronics must endure extreme folding during packaging and tension to maintain a rigid structure in the deployment state. Here, we present foldable and robustly deployable electronics inspired by Plantago, characterized by their tolerance to folding and tension due to integration of tough veins within thin leaf.
View Article and Find Full Text PDFPLoS One
January 2025
School of Mechanics and Engineering, Liaoning Technical University, Fuxin, Liaoning, China.
Using the Ordos Basin dry sandstone and sandstone saturated with different saline concentrations as research subjects, a self-developed constant temperature and pressure CO2 injection simulation device was employed to conduct permeability tests on sandstone under varying effective stresses and CO2 injection pressures. The test results indicated that during the CO2 injection process, the permeability of dry sandstone was two orders of magnitude higher than that of sandstones saturated with different saline concentrations. When the effective stress increases from 10 MPa to 28 MPa, the fissure compressibility of reservoir sandstone is influenced by the saturation of different saline concentrations, with the compressibility coefficients for 0%, 15%, and 30% saline-saturated sandstone being 0.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto Institute of Technology: Kyoto Kogei Sen'i Daigaku, Faculty of Molecular Chemistry and Engineering, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-0962, Kyoto, JAPAN.
Heteroarene-fused heteroles have attracted considerable attention owing to their unique electronic and photophysical properties. The bridging element plays a crucial role in determining the electronic characteristics of the resulting π-conjugated molecules. In this study, we synthesized a series of heteroarene-fused benzo[b]arsoles and investigated their structures and photophysical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!