is a fungal genus comprising species used as biocontrol agents in crop plant protection and with high value for industry. The beneficial effects of these species are supported by the secondary metabolites they produce. Terpenoid compounds are key players in the interaction of spp. with the environment and with their fungal and plant hosts; however, most of the terpene synthase (TS) genes involved in their biosynthesis have yet not been characterized. Here, we combined comparative genomics of TSs of 21 strains belonging to 17 spp., and gene expression studies on TSs using T6085 as a model. An overview of the diversity within the TS-gene family and the regulation of TS genes is provided. We identified 15 groups of TSs, and the presence of clade-specific enzymes revealed a variety of terpenoid chemotypes evolved to cover different ecological demands. We propose that functional differentiation of gene family members is the driver for the high number of TS genes found in the genomes of . Expression studies provide a picture in which different TS genes are regulated in many ways, which is a strong indication of different biological functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603203PMC
http://dx.doi.org/10.3390/microorganisms8101603DOI Listing

Publication Analysis

Top Keywords

combined comparative
8
comparative genomics
8
gene expression
8
expression studies
8
genomics gene
4
expression analyses
4
analyses provide
4
provide insights
4
insights terpene
4
terpene synthases
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!