Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we present microwave filters that are based on 6-nm-thick ferroelectric thin films of hafnium oxide doped with zirconium (HfZrO), which are tunable continuously in targeted bands of interest within the frequency range 0.1-16 GHz, when the applied direct current (DC) voltage is swept between 0 V and 4 V. Here, we exploit the orthorhombic polar phase in HfO through a careful doping using zirconium in an Atomic Layer Deposition (ALD) process, in order to guarantee phase stabilization at room temperature. Polarization versus voltage characterization has been carried out, showing a remanent polarization () of ~0.8 μC/cm and the coercive voltage at ~2.6 V. The average roughness has been found to be 0.2 nm for HfZrO films with a thickness of 6 nm. The uniform topography, without holes, and the low surface roughness demonstrate that the composition and the structure of the film are relatively constant in volume. Three filter configurations (low-pass, high-pass, and band-pass) have been designed, modelled, fabricated, and fully characterized in microwaves, showing a frequency shift of the minimum of the reflection coefficient between 90 MHz and 4.4 GHz, with a minimum insertion loss of approximately 6.9 dB in high-pass configuration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603125 | PMC |
http://dx.doi.org/10.3390/nano10102057 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!