Fermented alcoholic drinks' contribution to the gut microbiota composition is mostly unknown. However, intestinal microorganisms can use compounds present in beer. This work explored the associations between moderate consumption of beer, microbiota composition, and short chain fatty acid (SCFA) profile. Seventy eight subjects were selected from a 261 healthy adult cohort on the basis of their alcohol consumption pattern. Two groups were compared: (1) abstainers or occasional consumption (ABS) ( = 44; <1.5 alcohol g/day), and (2) beer consumption ≥70% of total alcohol (BEER) ( = 34; 200 to 600 mL 5% vol. beer/day; <15 mL 13% vol. wine/day; <15 mL 40% vol. spirits/day). Gut microbiota composition (16S rRNA gene sequencing) and SCFA concentration were analyzed in fecal samples. No differences were found in α and β diversity between groups. The relative abundance of gut bacteria showed that was lower ( = 0.009), while and were higher ( = 0.044 and = 0.037, respectively) in BEER versus ABS. In addition, in men, showed lower abundance in BEER than in ABS ( = 0.025). Butyric acid was higher in BEER than in ABS ( = 0.032), and correlated with abundance. In conclusion, the changes observed in a few taxa, and the higher butyric acid concentration in consumers versus non-consumers of beer, suggest a potentially beneficial effect of moderate beer consumption on intestinal health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7587552 | PMC |
http://dx.doi.org/10.3390/molecules25204772 | DOI Listing |
J Physiol
January 2025
Department of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
Important health disparities are observed in the prevalence of obesity and associated non-communicable diseases (NCDs), including type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) among ethnic groups. Yet, the underlying factors accounting for these disparities remain poorly understood. Fructose has been widely proposed as a potential mediator of these NCDs, given that hepatic fructose catabolism can result in deleterious metabolic effects, including insulin resistance and hepatic steatosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Life Sciences, Chongqing University, Chongqing, 401331, China.
The diverse and dynamic population of microorganisms present in the gut microbiota may affect host health. There are evidences to support the role of gut microbiota as a key player in reproductive development. Unfortunately, the relationship between reproductive disorders caused by aging and gut microbiota remains largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
Center for Inflammation, Immunity, & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America.
Microbiota-induced production of IL-22 by type 3 innate lymphoid cells (ILC3) plays an important role in maintaining intestinal health. Such IL-22 production is driven, in part, by IL-23 produced by gut myeloid cells that have sensed select microbial-derived mediators. The extent to which ILC3 can directly respond to microbial metabolites via IL-22 production is less clear, in part due to the difficulty of isolating and maintaining sufficient numbers of viable ILC3 ex vivo.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.
View Article and Find Full Text PDFMicrob Genom
January 2025
GMT Science 75 route de Lyons-La-Foret, Rouen F-76000, France.
Microbiome profiling tools rely on reference catalogues, which significantly affect their performance. Comparing them is, however, challenging, mainly due to differences in their native catalogues. In this study, we present a novel standardized benchmarking framework that makes such comparisons more accurate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!