In this paper, we report an approach to polymerization of a nanocomposite containing UV-polymerizable organic material and inorganic, NaYbF:Tm core-based nanoparticles (NPs), which are optimized for upconversion of near infrared (NIR) to ultraviolet (UV) and blue light. Our approach is compatible with numerous existing UV-polymerizable compositions and the NaYF: Yb, Tm core-based NPs are much more stable against harsh conditions than NIR organic photo-initiators proposed earlier. The use of a core-shell design for the NPs can provide a suitable method for binding with organic constituents of the nanocomposite, while maintaining efficient NIR-to-UV/blue conversion in the NaYbF core. The prepared photopolymerized transparent polymer nanocomposites display upconversion photoluminescence in UV, visible and NIR ranges. We also demonstrate a successful fabrication of polymerized nanocomposite structure with millimeter/submillimeter size uniformly patterned by 980 nm irradiation of inexpensive laser diode through a photomask.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603073PMC
http://dx.doi.org/10.3390/nano10102054DOI Listing

Publication Analysis

Top Keywords

situ ultraviolet
4
ultraviolet polymerization
4
polymerization upconversion
4
upconversion nanoparticles
4
nanocomposite
4
nanoparticles nanocomposite
4
nanocomposite structures
4
structures patterned
4
patterned infrared
4
infrared light
4

Similar Publications

[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].

Se Pu

February 2025

CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.

View Article and Find Full Text PDF

Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).

View Article and Find Full Text PDF

Cutaneous (CLE) and systemic lupus erythematosus (SLE) are autoimmune diseases with a multifactorial pathogenesis. Ultraviolet radiation (UVR) is the most important trigger of CLE; however, the degree of photosensitivity varies between the clinical subtypes. The expression of matrix metalloproteinases (MMPs)-important enzymes involved in skin turnover and homeostasis-is modulated by UVR.

View Article and Find Full Text PDF

Sudden biological contamination in Drinking Water Distribution System (DWDS) significantly threatens the safety of drinking water, with E. coli invasions being particularly hazardous to human health. Traditional disinfection methods (i.

View Article and Find Full Text PDF

Loading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!