Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thousands of people work in the precast/pre-stressed concrete industry every day. Due to the design of the precast/prestressed concrete product itself and the processes required for its production, employees are occasionally exposed to hazards. The industry recognizes this and devotes a significant amount of time and investment to mitigate these hazards and protect employees from harm. It is essential for employees to go through appropriate safety training before starting work in the plant. Practical safety training should be cost-effective, and performance guaranteed, and traditional training procedures include paper-based safety guidelines, lectures, videos, and on-site training. Virtual Reality (VR) provides an innovative approach for safety training as it could offer situational training with negligible risk and at a low cost. In this paper, a VR training module is developed to deliver safety training in a cost-effective yet repeatable manner, aiming to reduce common plant injuries. The module is developed using Unity3D and Visual Studio joint platforms and can be interfaced with using the Oculus Rift/Oculus S. The module addresses three major safety concerns in the plant: personal protective equipment (PPE), the tensioning of strand (the stressing process), and suspended loads. Efficacy and effectiveness analyses were conducted to evaluate the performance of the proposed VR module. The efficacy analysis was based on simulation sickness, user experience, and system usability. This analysis showed that the developed VR module is a user-friendly simulator with minimal simulation sickness. More than 50% of the participants reported no indications of simulation sickness. In addition, an effectiveness analysis was performed based upon a comparative study of this VR training method and the traditional video-based training method. This analysis indicated that VR training is more engaged and provides a better understanding of safety protocols and real-life experience of the precast/prestressed concrete plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apergo.2020.103286 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!