An improved deep eutectic solvent (DES)-based headspace single-drop microextraction procedure has been developed as a green procedure for gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The stability of the micro-drop was significantly improved using a DES as an extraction phase and a bell-shaped tube as a supporter. These strategies helped to perform the extraction process in higher temperatures and stirring rates. Finally, the back-extraction of the analytes into a proper solvent that is compatible with the chromatography system was applied. The efficacy of the independent variables on the extraction efficiency was evaluated via chemometric methods in two steps. The best result was obtained with choline chloride-oxalic acid at the molar ratio of 1:2, a stirring speed of 2000 rpm for 10 min as well as a sample temperature of 50 °C and with ionic strength prepared by using a 10% (w/v) NaCl. The method indicated a good linearity for the analytes (R≥0.9989). Under optimal conditions, the analytical signal was linear in the range of 0.01-50 μg L. Limit of detection (LOD) and limit of quantification (LOQ) were evaluated at the concentration levels of 0.003-0.012 and 0.009-0.049 μg L, respectively. Intraday and interday precision for all targeted compounds was less than 7.2% and 11.3%, respectively. Consequently, the proposed procedure was efficiently applied to extract and analyze the 16 target compounds in real aqueous samples representing satisfactory recoveries (94.40-105.98%).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2020.461618DOI Listing

Publication Analysis

Top Keywords

aqueous samples
12
deep eutectic
8
headspace single-drop
8
single-drop microextraction
8
polycyclic aromatic
8
aromatic hydrocarbons
8
eutectic solvent-based
4
solvent-based headspace
4
microextraction polycyclic
4
hydrocarbons aqueous
4

Similar Publications

Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

The development of a sensitive and selective silver nanoparticle assay for the quantitation of vitamin C (SNaP-C), as ascorbic acid (AA) and total ascorbic acid (TAA = AA + dehydroascorbic acid, DHAA), is described. Three assay parameters were investigated and optimized: (1) synthesis of silver nanoparticles (AgNPs) to produce a reliable enhanced localized surface plasmon resonance (LSPR) in the presence of specific added antioxidants; (2) ensuring long-term stability of AA and DHAA in aqueous solutions; and (3) SNaP-C assay conditions to allow for rapid analysis of samples (beverages) by monitoring the enhanced LSPR. The synthesis of AgNPs using soluble starch as a capping agent and d-arabinose as a reducing agent was optimized in a CEM Discover SP laboratory microwave.

View Article and Find Full Text PDF

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

In vitro antischistosomal activity of Artemisia species.

Acta Trop

January 2025

Centre of Excellence for Pharmaceutical Sciences (Pharmacen(TM)), North-West University, Private Bag X6001, Potchefstroom 2520, South Africa. Electronic address:

Praziquantel is currently the only effective treatment for schistosomiasis, but several limitations underscore the need for new therapeutic agents. Recent promising in vitro results with Artemisia species and the success of A. annua and its active compound artemisinin in treating parasitic infections warrant the need for further studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!