Evidence concerning short-term acute association between air pollutants and hospital admissions for respiratory diseases among children in a multi-city setting was quite limited. We conducted a time-series analysis to evaluate the association of six common air pollutants with hospital admissions for respiratory diseases among children aged 0-14 years in 4 cities (Guangzhou, Shanghai, Wuhan and Xining), China during 2013-2018. We used generalized additive models incorporating penalized smoothing splines and random-effect meta-analysis to calculate city-specific and pooled estimates, respectively. The exposure-response relationship curves were fitted using the cubic spline regression. Subgroup analyses by gender, age, season and disease subtype were also performed. A total of 183,036 respiratory diseases hospitalizations were recorded during the study period, and 94.1% of the cases were acute respiratory infections. Overall, we observed that increased levels of air pollutants except O, were significantly associated with increased hospital admissions for respiratory disease. Each 10 μg/m increase in PM, SO and NO at lag 07, PM at lag 03 and per 1 mg/m increase in CO at lag 01 corresponded to increments of 1.19%, 3.58%, 2.23%, 0.51% and 6.10% in total hospitalizations, respectively. Generally, exposure-response relationships of PM and SO in Guangzhou, SO, NO and CO in Wuhan, as well as SO and NO in Xining with respiratory disease hospitalizations were also found. Moreover, the adverse effects of these pollutants apart from PM in certain cities remained significant even at exposure levels below the current Chinese Ambient Air Quality Standards (CAAQS) Grade II. Children aged 4-14 years appeared to be more vulnerable to the adverse effects of PM, SO and NO. Furthermore, with the exception of O, the associations were stronger in cold season than in warm season. Short-term exposure to PM, SO, NO and CO were associated, in dose-responsive manners, with increased risks of hospitalizations for childhood respiratory diseases, and adverse effects of air pollutants except PM held even at exposure levels below the current CAAQS Grade II in certain cities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijheh.2020.113638 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
The Metropolitan Area of São Paulo (MASP) in southern Brazil is impacted by high ozone levels posing significant threats to its urban forests and the Atlantic Forest remnants. These green areas, covering 540 km and constituting 30% of MASP's territory, necessitate an urgent assessment of air pollution impacts on their flora. Our study investigates the effects of atmospheric pollution on the morphoanatomical and physiological responses of four native tree species (Alchornea sidifolia, Casearia sylvestris, Guarea macrophylla, and Machaerium nyctitans) across two Atlantic Forest remnants in MASP.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Health Management Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China; Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK. Electronic address:
Background: Despite the widespread availability of antihypertensive medications, residual cardiovascular risk of hypertension remained high. Limited studies have investigated the link between air pollution, particularly joint exposure to multiple air pollutants, with residual cardiovascular risk of hypertension.
Methods: 1981 hypertensive patients (≥ 18 years) from an ongoing longitudinal cohort in China, were enrolled between 2013 and 2019.
Environ Monit Assess
January 2025
Department of Environmental Management, Institute of Environmental Engineering, RUDN University, Miklukho-Maklaya Street, 117198, Moscow, Russia.
Globally, agricultural lands are among the top emitters of greenhouse gases (GHGs), responsible for over 20% of total greenhouse gas (GHG) emissions. Climatic conditions, an acute challenge in sub-Saharan Africa (SSA), where access to mitigation technologies remains limited, have heavily influenced these lands. This study explores GHG contributions from crop production and their devastating and deteriorating impacts on the economy and environment and proposes a sustainable solution.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China.
Precious metal catalysts are widely used for catalytic oxidation of various gaseous pollutants (CO, methane, and VOCs) due to their excellent catalytic activity. However, they are easily affected by SO and deactivated in actual industrial waste gas or motor vehicle exhaust. Therefore, this review systematically summarizes the representative studies of gaseous pollutant catalytic oxidation over precious metal catalysts with SO exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!