Introduction: The role of extra-hypothalamic thyrotropin-releasing hormone (TRH) has been investigated by pharmacological studies using TRH or its analogues and found to produce a wide array of effects in the central nervous system.
Methods: Immunofluorescence, In situ labeling of DNA (TUNEL), hybridization chain reaction and quantitative real-time polymerase chain reaction were used in this study.
Results: We found that the granular cells of the dentate gyrus expressed transiently a significant amount of TRH-like immunoreactivity and TRH mRNA during the 6-24 h period following global cerebral ischemia/reperfusion injury. TUNEL showed that apoptosis of neurons in the CA1 region occurred from 48 h and almost disappeared at 7 days. TRH administration 30 min before or 24 h after the injury could partially inhibit neuronal loss, and improve the survival of neurons in the CA1 region.
Conclusion: These data suggest that endogenous TRH expressed transiently in the dentate gyrus of the hippocampus may play an important role in the survival of neurons during the early stage of ischemia/reperfusion injury and that delayed application of TRH still produced neuroprotection. This delayed application of TRH has a promising therapeutic significance for clinical situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00207454.2020.1840374 | DOI Listing |
J Mol Med (Berl)
January 2025
Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.
View Article and Find Full Text PDFChin Med
January 2025
Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
Introduction: Preclinical studies have shown that oxygen therapy can improve ischaemic brain tissue oxygen tension, reduce reperfusion injury after revascularisation, promote neuroregeneration and inhibit inflammatory responses potentially exerting a beneficial effect after endovascular treatment (EVT) in patients with acute ischaemic stroke (AIS). However, the optimal fraction of inspired oxygen (FiO) during EVT under general anaesthesia is currently unknown. Therefore, we are conducting a randomised controlled trial (RCT) to evaluate the impact of high-concentration oxygen vs low-concentration normobaric oxygen on early neurological function after EVT.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!