AI Article Synopsis

  • * The study examines the potential of cool-water injections to mitigate thermal stress on reefs, focusing on Lizard Island as a viable location by using a detailed hydrodynamic model.
  • * While successful results show a slight reduction in reef temperature, the high energy costs and logistical challenges make large-scale implementation across numerous reefs impractical, requiring careful prioritization of sites for cooling efforts.

Article Abstract

Coral bleaching driven by ocean warming is one of the most visible ecological impacts of climate change and perhaps the greatest threat to the persistence of reefs in the coming decades. In the absence of returning atmospheric greenhouse gas concentrations to those compatible with ocean temperatures below the mass coral bleaching temperature thresholds, the most straightforward means to reduce thermal-stress induced bleaching is to cool water at the seabed. The feasibility of reducing the seabed temperature through cool-water injections is considered first by analysing the feasibility of doing so on 19 reefs with differing physical environments using a simple residence time metric in 200 m resolution hydrodynamic model configurations. We then concentrate on the reefs around Lizard Island, the most promising candidate of the 19 locations, and develop a 40 m hydrodynamic model to investigate the effect of the injection of cool water at differing volumetric rates. Injecting 27°C seawater at a rate of 5 m3 s-1 at 4 sites in early 2017 cooled 97 ha of the reef by 0.15°C or more. The power required to pump 5 m3 s-1 through a set of pipes over a distance of 3 km from a nearby channel is ∼466 kW. This power applied at 4 sites for 3 months achieves a 2 Degree Heating Weeks (DHWs) reduction on 97 ha of reef. A more precise energy costing will require further expert engineering design of the pumping equipment and energy sources. Even for the most physically favourable reefs, cool-water transported through pipes and injected at a reef site is energy expensive and cannot be scaled up to any meaningful fraction of the 3,100 reefs of the GBR. Should priority be given to reducing thermal stress on one or a few high value reefs, this paper provides a framework to identify the most promising sites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575073PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239978PLOS

Publication Analysis

Top Keywords

cool-water injections
8
thermal stress
8
coral bleaching
8
cool water
8
hydrodynamic model
8
reefs
7
optimising cool-water
4
injections reduce
4
reduce thermal
4
stress coral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!