Nanoscrolls are a class of nanostructures where atomic layers of 2D materials are stacked consecutively in a coaxial manner to form a 1D spiral topography. Self-assembly of chemical vapor deposition grown 2D WS monolayer into quasi-1D van der Waals scroll structure instigates a plethora of unique physiochemical properties significantly different from its 2D counterparts. The physical properties of such nanoscrolls can be greatly manipulated upon hybridizing them with high-quantum-yield colloidal quantum dots, forming 0D/2D structures. The efficient dissociation of excitons at the heterojunctions of QD/2D hybridized nanoscrolls exhibits a 3000-fold increased photosensitivity compared to the pristine 2D-material-based nanoscroll. The synergistic effects of confined geometry and efficient QD scatterers produce a nanocavity with multiple feedback loops, resulting in coherent lasing action with an unprecedentedly low lasing threshold. Predominant localization of the excitons along the circumference of this helical scroll results in a 12-fold brighter emission for the parallel-polarized transition compared to the perpendicular one, as confirmed by finite-difference time-domain simulation. The versatility of hybridized nanoscrolls and their unique properties opens up a powerful route for not-yet-realized devices toward practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202003944DOI Listing

Publication Analysis

Top Keywords

nanoscrolls class
8
hybridized nanoscrolls
8
nanoscrolls
5
qd/2d hybrid
4
hybrid nanoscrolls
4
class materials
4
materials high-performance
4
high-performance polarized
4
polarized photodetection
4
photodetection ultralow
4

Similar Publications

Nanoscrolls are a class of nanostructures where atomic layers of 2D materials are stacked consecutively in a coaxial manner to form a 1D spiral topography. Self-assembly of chemical vapor deposition grown 2D WS monolayer into quasi-1D van der Waals scroll structure instigates a plethora of unique physiochemical properties significantly different from its 2D counterparts. The physical properties of such nanoscrolls can be greatly manipulated upon hybridizing them with high-quantum-yield colloidal quantum dots, forming 0D/2D structures.

View Article and Find Full Text PDF

Rolling up two-dimensional (2D) materials into nanoscrolls could not only retain the excellent properties of their 2D hosts but also display intriguing physical and chemical properties that arise from their 1D tubular structures. Here, we report a new class of black phosphorus nanoscrolls (bPNSs), which are stable at room-temperature and energetically more favorable than 2D bP. Most strikingly, these bPNSs hold tunable direct band gaps and extremely high mobilities (e.

View Article and Find Full Text PDF

A simple way of synthesizing carbon nanotube (CNT)/graphene (GN) nanoscroll core/shell nanostructures is demonstrated using molecular dynamics (MD) simulations. The simulations show that GN sheets can fully self-scroll onto CNTs when the CNT radius is larger than a threshold of about 10 A, forming a stable core/shell structure. Increasing the length of the GN sheet results in multilayered carbon nanoscroll (CNS) shells that exhibit a tubular structure similar to that of multiwall CNTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!