Chinese materia medica processing is a distinguished and unique pharmaceutical technique in traditional Chinese medicine (TCM), which has played an important role in reducing side effects, increasing medical potencies, altering the properties and even changing the curative effects of raw herbs. The efficacy improvement in medicinal plants is mainly caused by changes in the key substances through an optimized processing procedure. Thus, the use of a rapid method for determining suitable chemical markers between raw and processed TCM is critical in order to elucidate how the bioactive compounds influence the clinical effects. In this study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry combined with MS/MS-based molecular networking (MN) and a multivariate statistical analysis method is proposed for the first time. This combination was used to identify the complex chemical composition and clarify the changed constituents between raw and processed Cistanche tubulosa (C. tubulosa). The chemical analysis results demonstrated that a total of 85 compounds were identified in the crude and processed C. tubulosa. Moreover, 34 compounds were detected as chemical markers. This systematic research into chemical constituents and chemical markers of crude and processed C. tubulosa lays a solid foundation for further study of the quality control of C. tubulosa. Moreover, the study provides a new and valuable technical strategy for analyzing chemical components and identifying potential chemical markers for the processing of herbal medicines.Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-020-02983-0DOI Listing

Publication Analysis

Top Keywords

chemical markers
16
raw processed
12
chemical
9
chemical components
8
markers raw
8
processed cistanche
8
cistanche tubulosa
8
ultra-high-performance liquid
8
liquid chromatography
8
chromatography coupled
8

Similar Publications

Background: Chronic and excessive alcohol consumption is the leading cause of death due to chronic liver disease. Alcohol-related liver disease (ALD) encompasses a broad spectrum of clinical and pathological features, ranging from asymptomatic and reversible pathologies to hepatocellular carcinoma (HCC), a highly prevalent and deadly liver cancer. Indeed, alcohol consumption is one of the main worldwide etiologies of HCC.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Background: Bacillus species produce antimicrobial lipopeptides (LPs) and methyl jasmonate (MeJA) induces resistance in harvested fruits against postharvest pathogens. However, there is limited evidence of the combined efficacy of Bacillus LPs and MeJA to suppress postharvest diseases.

Results: This study presents the combined effect of Bacillus LPs and MeJA to suppress P.

View Article and Find Full Text PDF

Background: 7-Hydroxymethotrexate (7-OHMTX) is the main metabolite in plasma following high-dose MTX (HD-MTX), which may result in activity and toxicity of the MTX. Moreover, 7-OHMTX could produce crystalline-like deposits within the renal tubules under acidic conditions or induce renal inflammation, oxidative stress, and cell apoptosis through various signaling pathways, ultimately leading to kidney damage. The objectives of this study were thus to explore the exposure-safety relationship of two compounds and search the most reliable marker for predicting HDMTX nephrotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!