First Report of Causing Powdery Mildew on in Taiwan.

Plant Dis

Taichung District Agricultural Research and Extension Station, Plant Protection Laboratory, Changhua, Taiwan;

Published: October 2020

L., known as common zinnia, is an annual flowering plant belonging to the Asteraceae family and native to North America. The plant has colorful flowers and is one of the popular ornamental bedding plants for gardening. In March 2020, powdery mildew symptoms were observed in a zinnia floral field with an incidence of >70% in Dacun Township, Changhua County, Taiwan. The symptoms were spotted on the stems, flower petals and leaves which appeared as irregular colonies and white patches on the surfaces. When disease progressed, most of the plant surfaces were covered by the white fungal colonies and became yellowish. Under microscopic examination, hyphal appressoria of the fungus were indistinct or slightly nipple-shaped. The conidiophores were unbranched, erect, straight, smooth to slightly rough, 75.0 to 200.0 × 10.0 to 15.0 µm (n=10), composed of a cylindrical, flexuous foot cell, 40.0 to 100.0 × 8.8 to 15.0 µm (n=10), and following 1 to 5 shorter cells. The conidia were ellipsoid to ovoid, 25.0 to 37.5 × 15.0 to 23.8 µm (n=60), with an average length-to-width ratio of 1.8 and contained fibrosin bodies. No chasmothecia were found. Three voucher specimens (TNM Nos. F0033680, F0033681, and F0033682) were deposited in the National Museum of Natural Science, Taichung City, Taiwan. To confirm the identification, the internal transcribed spacer (ITS) regions of the three specimens were amplified using primer pairs ITS1/PM6 and PM5/ITS4 (Shen et al. 2015) and sequenced from both ends. The resulting sequences were deposited in GenBank under Accession Nos. MT568609, MT568610, and MT568611. The sequences were identical to each other and shared a 100% identity with that of MUMH 338 on from Japan (Accession No. AB040355) (Ito and Takamatsu 2010) over a 475 bp alignment. Accordingly, the fungus was identified as (Castagne) U. Braun & Shishkoff (Braun and Cook 2012) based on its morphological and molecular characters. Pathogenicity was demonstrated through inoculation by gently pressing naturally infected leaves onto leaves of three healthy potted common zinnia that had been sprayed with 0.02% Tween 20. Additional three non-inoculated plants treated in the same way without inoculating the powdery mildew served as the controls. Powdery mildew colonies were observed on inoculated leaves after 10 days at room temperature, later the diseased leaves became yellowish and deteriorated. The morphological traits of the fungus on the inoculated leaves were similar to those of the first observed. In addition, the ITS sequence from a colony on the inoculated leaves was 100% identical to MT568609-MT568611, fulfilling the Koch's postulates. All the controls remained symptomless. is known to be a host for different species of powdery mildew in the genus , , and (Farr and Rossman 2020). In Taiwan, powdery mildew has been briefly reported on zinnia without detailed descriptions (Hsieh 1983). This study confirmed as a causal agent of powdery mildew in Taiwan and the awareness of the disease may benefit the floral industry. To our knowledge, this is the first confirmed report of on in Taiwan.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-06-20-1263-PDNDOI Listing

Publication Analysis

Top Keywords

powdery mildew
28
inoculated leaves
12
mildew taiwan
8
common zinnia
8
150 µm
8
µm n=10
8
powdery
7
mildew
7
leaves
7
taiwan
6

Similar Publications

Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety.

J Agric Food Chem

January 2025

State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.

View Article and Find Full Text PDF

The protracted and immoderate utilization of chemical fertilizers has been detrimental to the composition of fungi in the soil and quality of crops. To ameliorate the adverse effects, a 6-year positioning experiment was undertaken to investigate the impact of substituting 0 % (CF), 25 % (M25), 50 % (M50), 75 % (M75), and 100 % (M100) of 225 kg ha chemical fertilizer nitrogen with manure nitrogen on both soil fungi and maize quality. This study showed that the expansion of Aspergillus heterocaryoticus, Xerochrysium dermatitidis, and Aspergillus penicillioides contributed to heightened levels of amylose and soluble sugars.

View Article and Find Full Text PDF

The Exocyst Subunits EqSec5 and EqSec6 Promote Powdery Mildew Fungus Growth and Pathogenicity.

J Fungi (Basel)

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Haikou 570228, China.

The exocyst complex in eukaryotic cells modulates secretory vesicle transportation to promote exocytosis. The exocyst is also required for the hyphal growth and pathogenic development of several filamentous phytopathogens. Obligate biotrophic powdery mildew fungi cause considerable damage to many cash crops; however, the exocyst's roles in this group of fungi is not well studied.

View Article and Find Full Text PDF

Rosa laevigata is an excellent rose germplasm, highly resistant to aphid, and immune to both rose black spot and powdery mildew disease. It is also a well-known edible plant with a long history of medicinal use in China, having the effects of improving kidney function, inhibiting arteriosclerosis, and reducing inflammation. In this study, we assembled a high-quality chromosome-scale genome for R.

View Article and Find Full Text PDF

The wheat NLR pair RXL/Pm5e confers resistance to powdery mildew.

Plant Biotechnol J

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

Powdery mildew poses a significant threat to global wheat production and most cloned and deployed resistance genes for wheat breeding encode nucleotide-binding and leucine-rich repeat (NLR) immune receptors. Although two genetically linked NLRs function together as an NLR pair have been reported in other species, this phenomenon has been relatively less studied in wheat. Here, we demonstrate that two tightly linked NLR genes, RXL and Pm5e, arranged in a head-to-head orientation, function together as an NLR pair to mediate powdery mildew resistance in wheat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!