Semiconductor nanowires (NWs) capped with metal nanoparticles (NPs) show multifunctional and synergistic properties, which are important for applications in the fields of catalysis, photonics, and electronics. Conventional colloidal syntheses of this class of hybrid structures require complex sequential seeded growth, where each section requires its own set of growth conditions, and methods for preparing such wires are not universal. Here, we report a new and general method for synthesizing metal-semiconductor nanohybrids based on particle catalysts, prepared by scanning probe block copolymer lithography, and chemical vapor deposition. In this process, metallic heterodimer NPs were used as catalysts for NW growth to form semiconductor NWs capped with metallic particles (Au, Ag, Co, Ni). Interestingly, the growth processes for NWs on NPs are regioselective and controlled by the chemical composition of the metallic heterodimer used. Using a systematic experimental approach, paired with density functional theory calculations, we were able to postulate three different growth modes, one without precedent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c09222 | DOI Listing |
ACS Omega
December 2024
Semiconductor Physics Group, University Ulm, 89081 Ulm, Germany.
In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
The outstanding performance of superconducting nanowire single-photon detectors (SNSPDs) has expanded their application areas from quantum technologies to astronomy, space communication, imaging, and LiDAR. As a result, there has been a surge in demand for these devices, that commercial products cannot readily meet. Consequently, more research and development efforts are being directed towards establishing in-house SNSPD manufacturing, leveraging existing nano-fabrication capabilities that can be customized and fine-tuned for specific needs.
View Article and Find Full Text PDFTalanta
December 2024
Electroanalytical Chemistry Laboratory, Faculty of Chemistry, University of Guilan, Namjoo Street, P.O. Box: 1914-41335, Rasht, Iran.
Glutathione (GSH) is a bioactive tripeptide with important physiological functions in animals, plants, and microorganisms. GSH participates in various biochemical reactions in vivo and is known for its antioxidant, anti-allergy, and detoxification properties. This study introduces an innovative photoelectrochemical (PEC) method for GSH detection, leveraging a fluorine-doped tin oxide (FTO) electrode enhanced by TiO nanoflowers and graphitic carbon nitride quantum dots (g-CNQDs).
View Article and Find Full Text PDFNanotechnology
December 2024
Ioffe Institute, Politekhnicheskaya st. 29, Sankt-Peterburg, 194021, RUSSIAN FEDERATION.
The processes of electrochemical deposition of Ni on vertically aligned GaAs nanowires (NWs) grown by molecular-beam epitaxy (MBE) using Au as a growth catalyst on Si(111) substrates were studied. Based on the results of electrochemical deposition, it was concluded that during the MBE synthesis of NWs the self-induced formation of conductive channels can occur inside NWs, thereby forming quasi core-shell nanowires. Depending on the length of the channel compare to the NW heights and the parameters of electrochemical deposition, the different hybrid metal-semiconductor nanostructures, such as Ni nanoparticles on GaAs NW side walls, Ni clusters on top ends of GaAs NWs, core-shell Ni/GaAs NWs, were obtained.
View Article and Find Full Text PDFSmall
December 2024
Department of Fiber Convergence Material Engineering, Dankook University, Gyeonggi-Do, 16890, Republic of Korea.
Approximately 2 billion people still lack access to clean drinking water. Extensive efforts are underway to develop semiconductor photocatalysts for water disinfection and environmental remediation, but conventional liquid-solid diphase interfacial photocatalysts face challenges like low diffusion coefficients and limited solubility of dissolved oxygen. This study introduces freestanding copper oxide fluffy pine needle structures (CO-FPNs) with tunable water pollutants-gas-solid (WGS) triple-phase interfaces that enhance oxygen enrichment and reactive oxygen species (ROS) production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!