Stepwise spin-state switching in a manganese(III) complex.

Dalton Trans

Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C V Raman Road, Bangalore 560012, India.

Published: November 2020

A mononuclear manganese(iii) complex containing a flexible hexadentate chelating ligand has been prepared and characterized by performing, at various temperatures, single-crystal X-ray diffraction analyses and magnetic, spectroscopic, and electrochemical studies. The complex was shown to consist of an MnN4O2 octahedral coordination environment, and to exhibit reversible two-step thermally induced spin-state switching, a gradual one at 168 K and an abrupt one at 103 K. Structural analyses revealed the existence of three spin-states, namely high-spin, low-spin, and intermediate states, during the spin-state switching process. Electrochemistry studies showed the quasi-reversible reduction and oxidation of the manganese(iii) center with a comparatively easily accessible reduced state.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt02746dDOI Listing

Publication Analysis

Top Keywords

spin-state switching
12
manganeseiii complex
8
stepwise spin-state
4
switching manganeseiii
4
complex mononuclear
4
mononuclear manganeseiii
4
complex flexible
4
flexible hexadentate
4
hexadentate chelating
4
chelating ligand
4

Similar Publications

Pd(0)/Pd(II) Electromerism Triggered by Lewis Base Coordination to a Redox-Active Silicon Z-Type Ligand.

Angew Chem Int Ed Engl

December 2024

Universität Heidelberg: Universitat Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.

Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.

View Article and Find Full Text PDF

Reversibly Modulating the Selectivity of Carbon Dioxide Reduction via Ligand-Driven Spin Crossover.

J Phys Chem Lett

December 2024

Department of Chemical Physics and Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

Selectivity is an essential aspect in catalysis. At present, the improvement of the selectivity for complex reactions with multiple pathways/products, for example the carbon dioxide reduction reaction (CORR), can usually be achieved for only one pathway/product. It is still a challenge to reversibly modulate the selectivity between two reaction pathways or products of the CORR by one catalyst.

View Article and Find Full Text PDF

The ability to electrically manipulate spin states in magnetic materials is essential for the advancement of energy-efficient spintronic device, which is typically achieved in systems composed of a spin source and a magnetic target, where the magnetic state of the target is altered by a charge current. While theories suggest that ferromagnets could function as more versatile spin sources, direct experimental studies involving only the spin source and target layers have been lacking. Here electrical manipulation of spin states in noncolinear antiferromagnet MnSn using ferromagnets (Ni, Fe, NiFe, CoFeB) as the spin sources is reported.

View Article and Find Full Text PDF

Femtosecond Spin-State Switching Dynamics of Fe(II) Complexes Condensed in Thin Films.

ACS Nano

December 2024

Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany.

The tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature.

View Article and Find Full Text PDF

Near-Infrared Light-Induced Spin-State Switching Based on Fe(II)-Hg(II) Spin-Crossover Network.

Angew Chem Int Ed Engl

December 2024

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

The development of molecular switches with tunable properties has garnered considerable interest over several decades. A novel spin-crossover (SCO) material based on iron(II) complexes incorporating 4-acetylpyridine (4-acpy) and [Hg(SCN)] anions was synthesized and formulated as [Fe(4-acpy)][Hg(μ-SCN)] (1). Compound 1 is crystallized in a three-dimensional network in the non-centrosymmetric orthorhombic space group Pna2 with two octahedral [Fe(4-acpy)(NCS)] entities featuring two distinct Fe centers (Fe1 and Fe2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!