A mononuclear manganese(iii) complex containing a flexible hexadentate chelating ligand has been prepared and characterized by performing, at various temperatures, single-crystal X-ray diffraction analyses and magnetic, spectroscopic, and electrochemical studies. The complex was shown to consist of an MnN4O2 octahedral coordination environment, and to exhibit reversible two-step thermally induced spin-state switching, a gradual one at 168 K and an abrupt one at 103 K. Structural analyses revealed the existence of three spin-states, namely high-spin, low-spin, and intermediate states, during the spin-state switching process. Electrochemistry studies showed the quasi-reversible reduction and oxidation of the manganese(iii) center with a comparatively easily accessible reduced state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0dt02746d | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Universität Heidelberg: Universitat Heidelberg, Anorganisch-Chemisches Institut, Im Neuenheimer Feld 270, 69120, Heidelberg, GERMANY.
Electromerism (aka. valence tautomerism) corresponds to the switching of electronic distributions between redox-active ligands and central elements. While this phenomenon is well established for several transition metals, the Pd(0)/Pd(II) couple could not yet be involved due to the high energy of the Pd(0) state.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2024
Department of Chemical Physics and Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
Selectivity is an essential aspect in catalysis. At present, the improvement of the selectivity for complex reactions with multiple pathways/products, for example the carbon dioxide reduction reaction (CORR), can usually be achieved for only one pathway/product. It is still a challenge to reversibly modulate the selectivity between two reaction pathways or products of the CORR by one catalyst.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
The ability to electrically manipulate spin states in magnetic materials is essential for the advancement of energy-efficient spintronic device, which is typically achieved in systems composed of a spin source and a magnetic target, where the magnetic state of the target is altered by a charge current. While theories suggest that ferromagnets could function as more versatile spin sources, direct experimental studies involving only the spin source and target layers have been lacking. Here electrical manipulation of spin states in noncolinear antiferromagnet MnSn using ferromagnets (Ni, Fe, NiFe, CoFeB) as the spin sources is reported.
View Article and Find Full Text PDFACS Nano
December 2024
Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany.
The tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
The development of molecular switches with tunable properties has garnered considerable interest over several decades. A novel spin-crossover (SCO) material based on iron(II) complexes incorporating 4-acetylpyridine (4-acpy) and [Hg(SCN)] anions was synthesized and formulated as [Fe(4-acpy)][Hg(μ-SCN)] (1). Compound 1 is crystallized in a three-dimensional network in the non-centrosymmetric orthorhombic space group Pna2 with two octahedral [Fe(4-acpy)(NCS)] entities featuring two distinct Fe centers (Fe1 and Fe2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!