In the present work, to enhance the properties of a pencil graphite electrode (PGE), highly functionalized carbon quantum dots (CQDs) were synthesized and mixed with multiwall carbon nanotubes (MWCNTs) as novel modifiers for the preparation of working electrodes. These modifiers exhibited unique characteristics owing to the fascinating and well-defined properties of the CQD-MWCNT nanocomposite, including high surface to volume ratio, high conductivity, high stability and excellent electrocatalytic activity. Consequently, a modified pencil graphite electrode based on poly (diallyldimethylammonium chloride) (PDDA)/MWCNT/CQD was used to monitor the oxidation signals of methadone hydrochloride. Notably, field emission scanning electron microscopy (FE-SEM) was used to characterize the morphology and features of the different modifiers on the electrode surface. The proposed sensor was characterized via electrochemical studies including differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Under the optimum experimental conditions, the current response and concentration of methadone exhibited a linear relationship in the range of 0.1-225 μM with a detection limit of 0.03 μM. Furthermore, this sensor was successfully applied to determine methadone in human urine and plasma samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ay01374aDOI Listing

Publication Analysis

Top Keywords

carbon quantum
8
quantum dots
8
multiwall carbon
8
carbon nanotubes
8
methadone hydrochloride
8
pencil graphite
8
graphite electrode
8
innovative highly
4
highly sensitive
4
sensitive electrochemical
4

Similar Publications

Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.

View Article and Find Full Text PDF

Electrochemical nitrate reduction to ammonia (NORR) is promising to not only tackle environmental issues caused by nitrate but also produce ammonia at room temperatures. However, two critical challenges are the lack of effective electrocatalysts and the understanding of related reaction mechanisms. To overcome these challenges, we employed first-principles calculations to thoroughly study the performance and mechanisms of triple-atom catalysts (TACs) composed of transition metals (including 27 homonuclear TACs and 4 non-noble bimetallic TACs) anchored on N-doped carbon (NC).

View Article and Find Full Text PDF

A Magnetic Photocatalytic Composite Derived from Waste Rice Noodle and Red Mud.

Nanomaterials (Basel)

December 2024

College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China.

This study is the first to convert two waste materials, waste rice noodles (WRN) and red mud (RM), into a low-cost, high-value magnetic photocatalytic composite. WRN was processed via a hydrothermal method to produce a solution containing carbon quantum dots (CQDs). Simultaneously, RM was dissolved in acid to form a Fe ion-rich solution, which was subsequently mixed with the CQDs solution and underwent hydrothermal treatment.

View Article and Find Full Text PDF

Layered double hydroxide modified bismuth vanadate as an efficient photoanode for enhancing photoelectrochemical water splitting.

Mater Horiz

January 2025

Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, 441-8580, Aichi, Japan.

Photoelectrochemical (PEC) water splitting has attracted significant interest as a promising approach for producing clean and sustainable hydrogen fuel. An efficient photoanode is critical for enhancing PEC water splitting. Bismuth vanadate (BiVO) is a widely recognized photoanode for PEC applications due to its visible light absorption, suitable valence band position for water oxidation, and outstanding potential for modifications.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!