Towards Photochromic Azobenzene-Based Inhibitors for Tryptophan Synthase.

Chemistry

Institute for Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, Universitätsstrasse 31, 93040, Regensburg, Germany.

Published: February 2021

Light regulation of drug molecules has gained growing interest in biochemical and pharmacological research in recent years. In addition, a serious need for novel molecular targets of antibiotics has emerged presently. Herein, the development of a photocontrollable, azobenzene-based antibiotic precursor towards tryptophan synthase (TS), an essential metabolic multienzyme complex in bacteria, is presented. The compound exhibited moderately strong inhibition of TS in its E configuration and five times lower inhibition strength in its Z configuration. A combination of biochemical, crystallographic, and computational analyses was used to characterize the inhibition mode of this compound. Remarkably, binding of the inhibitor to a hitherto-unconsidered cavity results in an unproductive conformation of TS leading to noncompetitive inhibition of tryptophan production. In conclusion, we created a promising lead compound for combatting bacterial diseases, which targets an essential metabolic enzyme, and whose inhibition strength can be controlled with light.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898615PMC
http://dx.doi.org/10.1002/chem.202004061DOI Listing

Publication Analysis

Top Keywords

tryptophan synthase
8
essential metabolic
8
inhibition strength
8
inhibition
5
photochromic azobenzene-based
4
azobenzene-based inhibitors
4
inhibitors tryptophan
4
synthase light
4
light regulation
4
regulation drug
4

Similar Publications

The relationship between membrane proteins and the lipid constituents of the membrane bilayer depends on finely-tuned atomic interactions, which itself depends on the precise distribution of amino acids within the 3D structure of the protein. In this regard, tryptophan (Trp), one of the least abundant amino acids, is found at higher levels in transmembrane proteins where it likely plays a role in helping anchor them to the membrane. We now re-evaluate Trp distribution in membrane proteins using all known proteins in the Swiss-Prot database and confirm that it is somewhat higher (∼1.

View Article and Find Full Text PDF

Fungus-derived opine enhances plant photosynthesis.

J Adv Res

November 2024

College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China. Electronic address:

Introduction: Plant-fungal interactions stimulate endophytic fungi to produce a plethora of metabolites that enhance plant growth and improve stress resistance. Opines, naturally occurring compounds formed through the condensation of amino acids with α-keto acids or sugars, have diverse biological functions and are mainly present in bacteria. Interestingly, investigations have revealed the presence of opine synthases (OSases) in fungal species as well, and their functions are yet to be studied.

View Article and Find Full Text PDF

Altering Active-Site Loop Dynamics Enhances Standalone Activity of the Tryptophan Synthase Alpha Subunit.

ACS Catal

November 2024

Institut de Química Computacional i Catàlisi and Departament de Química, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain.

The α-subunit (TrpA) of the allosterically regulated bifunctional tryptophan synthase αββα enzyme catalyzes the retro-aldol cleavage of indole-glycerol phosphate (IGP) to d-glyceraldehyde 3-phosphate (G3P) and indole. The activity of the enzyme is highly dependent on the β-subunit (TrpB), which allosterically regulates and activates TrpA for enhanced function. This contrasts with the homologous BX1 enzyme from that can catalyze the same reaction as TrpA without requiring the presence of any additional binding partner.

View Article and Find Full Text PDF

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and risk of long COVID has been associated with the depletion or over-abundance of specific taxa within the gut microbiome. However, the microbial mechanisms mediating these effects are not yet known. We hypothesized that altered microbial production of tryptophan and its downstream derivatives might contribute to inappropriate immune responses to viral infection.

View Article and Find Full Text PDF

Lesion-mimic mutants (LMMs) serve as valuable resources for uncovering the molecular mechanisms that govern programmed cell death (PCD) in plants. Despite extensive research, the regulatory mechanisms of PCD and lesion formation in various LMMs remain to be fully elucidated. In this study, we identified a rice LMM named early leaf lesion and senescence 1 (els1), cloned the causal gene through map-based cloning, and confirmed its function through complementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!