Sensorineural hearing loss is a prevalent problem that adversely impacts quality of life by compromising interpersonal communication. While hair cell damage is readily detectable with the clinical audiogram, this traditional diagnostic tool appears inadequate to detect lost afferent connections between inner hair cells and auditory nerve (AN) fibers, known as cochlear synaptopathy. The envelope-following response (EFR) is a scalp-recorded response to amplitude modulation, a critical acoustic feature of speech. Because EFRs can have greater amplitude than wave I of the auditory brainstem response (ABR; i.e., the AN-generated component) in humans, the EFR may provide a more sensitive way to detect cochlear synaptopathy. We explored the effects of kainate- (kainic acid) induced excitotoxic AN injury on EFRs and ABRs in the budgerigar (Melopsittacus undulatus), a parakeet species used in studies of complex sound discrimination. Kainate reduced ABR wave I by 65-75 % across animals while leaving otoacoustic emissions unaffected or mildly enhanced, consistent with substantial and selective AN synaptic loss. Compared to wave I loss, EFRs showed similar or greater percent reduction following kainate for amplitude-modulation frequencies from 380 to 940 Hz and slightly less reduction from 80 to 120 Hz. In contrast, forebrain-generated middle latency responses showed no consistent change post-kainate, potentially due to elevated "central gain" in the time period following AN damage. EFR reduction in all modulation frequency ranges was highly correlated with wave I reduction, though within-animal effect sizes were greater for higher modulation frequencies. These results suggest that even low-frequency EFRs generated primarily by central auditory nuclei might provide a useful noninvasive tool for detecting synaptic injury clinically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7822981 | PMC |
http://dx.doi.org/10.1007/s10162-020-00776-x | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Department of Radiology, Istanbul Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.
View Article and Find Full Text PDFEur Radiol Exp
January 2025
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 Avenue du Marechal de Lattre de Tassigny, 54000, Nancy, France.
Background: We evaluated the accuracy of magnetic resonance imaging (MRI) computed tomography (CT)-like sequences compared to normal-resolution CT (NR-CT) and super-high-resolution CT (SHR-CT) for planning of cochlear implantation.
Methods: Six cadaveric temporal bone specimens were used. 3-T MRI scans were performed using radial volumetric interpolated breath-hold (STARVIBE), pointwise-encoding time reduction with radial acquisition (PETRA), and ultrashort time of echo (UTE) sequences.
Nat Commun
January 2025
School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo.
View Article and Find Full Text PDFJ Acoust Soc Am
December 2024
Department of Biomedical Engineering, University of Rochester, Rochester, New York 14620, USA.
Profile-analysis experiments measure the ability to discriminate complex sounds based on patterns, or profiles, in their amplitude spectra. Studies of profile analysis have focused on normal-hearing listeners and target frequencies near 1 kHz. To provide more insight into underlying mechanisms, we studied profile analysis over a large target frequency range (0.
View Article and Find Full Text PDFLaryngoscope
December 2024
Division of Otolaryngology - Head & Neck Surgery, Cooper University Health Care, Camden, New Jersey, U.S.A.
Objective(s): To compare the incidence of acute and chronic complications of temporal bone fractures, and identify predictors for post-injury, audiometrically confirmed hearing loss.
Methods: Retrospective cohort analysis of patients with acute temporal bone fractures who underwent both in-hospital and outpatient follow-up Otolaryngology evaluation at an academic, tertiary-care institution from January 2002 to January 2023. Otologic outcomes were compared between initial and follow-up evaluations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!