AI Article Synopsis

  • ACE2 is an entry receptor for SARS-CoV-2 and is also involved in various physiological processes; its role as an interferon-inducible gene raises questions about the effectiveness of IFN treatments in COVID-19.
  • Researchers discovered a new isoform of ACE2, called MIRb-ACE2, which is expressed in the aerodigestive and gastrointestinal tracts and responds to IFN stimulation, unlike the standard ACE2.
  • The MIRb-ACE2 variant is a truncated and unstable form of ACE2 that lacks the necessary binding domains for SARS-CoV-2, suggesting it does not contribute to viral infection or enhance its spread.

Article Abstract

Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and a regulator of several physiological processes. ACE2 has recently been proposed to be interferon (IFN) inducible, suggesting that SARS-CoV-2 may exploit this phenomenon to enhance viral spread and questioning the efficacy of IFN treatment in coronavirus disease 2019. Using a recent de novo transcript assembly that captured previously unannotated transcripts, we describe a new isoform of ACE2, generated by co-option of intronic retroelements as promoter and alternative exon. The new transcript, termed MIRb-ACE2, exhibits specific expression patterns across the aerodigestive and gastrointestinal tracts and is highly responsive to IFN stimulation. In contrast, canonical ACE2 expression is unresponsive to IFN stimulation. Moreover, the MIRb-ACE2 translation product is a truncated, unstable ACE2 form, lacking domains required for SARS-CoV-2 binding and is therefore unlikely to contribute to or enhance viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610354PMC
http://dx.doi.org/10.1038/s41588-020-00732-8DOI Listing

Publication Analysis

Top Keywords

enhance viral
8
ifn stimulation
8
ace2
6
tissue-specific interferon-inducible
4
interferon-inducible expression
4
expression nonfunctional
4
nonfunctional ace2
4
ace2 endogenous
4
endogenous retroelement
4
retroelement co-option
4

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

We previously documented successful resolution of skeletal and dental disease in the infantile and late-onset murine models of hypophosphatasia (HPP), with a single injection of an adeno-associated serotype 8 vector encoding mineral-targeted TNAP (AAV8-TNAP-D10). Here, we conducted dosing studies in both HPP mouse models. A single escalating dose from 4x108 up to 4x1010 (vg/b) was intramuscularly injected into 4-day-old Alpl-/- mice (an infantile HPP model) and a single dose from 4x106 up to 4x109 (vg/b) was administered to 8-week-old AlplPrx1/Prx1 mice (a late-onset HPP model).

View Article and Find Full Text PDF

A PDMS/chitosan/MPMs composite film based on multi-field coupling enhancement for African swine fever virus P72 protein detection.

Mikrochim Acta

January 2025

Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Integrated Circuits, Taiyuan University of Technology, Taiyuan, 030024, China.

African swine fever (ASF) is an acute hemorrhagic disease in pigs caused by the African swine fever virus (ASFV), which has a high mortality rate and brought great damage to global pig farming industry. At present, there is no effective treatment or vaccine to combat ASFV infection, so early detection of ASFV has become particularly important. Therefore, the PDMS/chitosan/MPMs composite film was proposed to detect ASFV P72.

View Article and Find Full Text PDF

Human T-lymphotropic virus-1 (HTLV-1) induces neoplastic adult T-cell leukemia/lymphoma (ATLL) and neurological HTLV-1 associated myelopathy (HAM) in approximately 3%-5% of infected individuals. The precise factors that facilitate disease manifestation are still unknown; interaction between the virus and the host's immune response is key. Cytokines regulates physiological activities and their dysregulation may initiate the pathogenesis of various malignant and infectious diseases.

View Article and Find Full Text PDF

Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation.

Free Radic Biol Med

January 2025

Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Article Synopsis
  • COVID-19, caused by SARS-CoV-2, poses serious global health risks, including the potential for secondary liver injury related to metabolic enzyme changes.
  • This study explores how prior infection with SARS-CoV-2 affects alcohol-induced liver damage, using transgenic mice that express human ACE2.
  • Results showed that infected mice experienced worsened liver injury after alcohol consumption, with alterations in metabolic enzymes and increased levels of a toxic alcohol byproduct, indicating a complex interaction between COVID-19 and alcohol effects on the liver.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!