Shwachman-Diamond syndrome (SDS) is a bone marrow failure (BMF) syndrome associated with an increased risk of myelodysplasia and leukemia. The molecular mechanisms of SDS are not fully understood. We report that primitive hematopoietic cells from SDS patients present with a reduced activity of the small RhoGTPase Cdc42 and concomitantly a reduced frequency of HSCs polar for polarity proteins. The level of apolarity of SDS HSCs correlated with the magnitude of HSC depletion in SDS patients. Importantly, exogenously provided Wnt5a or GDF11 that elevates the activity of Cdc42 restored polarity in SDS HSCs and increased the number of HSCs in SDS patient samples in surrogate ex vivo assays. Single cell level RNA-Seq analyses of SDS HSCs and daughter cells demonstrated that SDS HSC treated with GDF11 are transcriptionally more similar to control than to SDS HSCs. Treatment with GDF11 reverted pathways in SDS HSCs associated with rRNA processing and ribosome function, but also viral infection and immune function, p53-dependent DNA damage, spindle checkpoints, and metabolism, further implying a role of these pathways in HSC failure in SDS. Our data suggest that HSC failure in SDS is driven at least in part by low Cdc42 activity in SDS HSCs. Our data thus identify novel rationale approaches to attenuate HSCs failure in SDS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334678 | PMC |
http://dx.doi.org/10.1038/s41375-020-01054-8 | DOI Listing |
Zhonghua Xue Ye Xue Za Zhi
July 2024
Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
Eur J Haematol
October 2024
Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.
Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure disorder that often presents at infancy. Progress has been made in revealing causal mutated genes (SBDS and others), ribosome defects, and hematopoietic aberrations in SDS. However, the mechanism underlying the hematopoietic failure remained unknown, and treatment options are limited.
View Article and Find Full Text PDFBlood
August 2024
Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom.
Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.
View Article and Find Full Text PDFFront Immunol
January 2024
Department of Neurology, University of California, Irvine, CA, United States.
Background: Glutamic acid decarboxylase antibody-spectrum disorders (GAD-SDs) include a group of autoimmune neurological diseases associated with neuronal excitability, most noticeably stiff person syndrome. Immune modulators are the mainstay of treatment, but a significant number of patients remain refractory.
Methods: We present our single-center experience of eight cases of GAD-SD, two of which were refractory to immune modulatory treatments.
Nat Commun
August 2023
Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!