Objective was to analyse bacterial composition and abundance of Clostridioides difficile in gut microbiome of patients with C. difficile infection (CDI) in association with clinical characteristics. Whole metagenome sequencing of gut microbiome of 26 CDI patients was performed, and the relative abundance of C. difficile and its toxin genes was measured. Clinical characteristics of the patients were obtained through medical records. A strong correlation between the abundance of C. difficile and tcdB genes in CDI patients was found. The relative abundance of C. difficile in the gut microbiome ranged from undetectable to 2.8% (median 0.089). Patients with fever exhibited low abundance of C. difficile in their gut, and patients with fewer C. difficile organisms required long-term anti-CDI treatment. Abundance of Bifidobacterium and Bacteroides negatively correlated with that of C. difficile at the genus level. CDI patients were clustered using the bacterial composition of the gut: one with high population of Enterococcus (cluster 1, n = 12) and another of Bacteroides or Lactobacillus (cluster 2, n = 14). Cluster1 showed significantly lower bacterial diversity and clinical cure at the end of treatment. Additionally, patients with CDI exhibited increased ARGs; notably, bla, bla and bla were enriched. C. difficile existed in variable proportion of the gut microbiome in CDI patients. CDI patients with Enterococcus-rich microbiome in the gut had lower bacterial diversity and poorer clinical cure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573688 | PMC |
http://dx.doi.org/10.1038/s41598-020-74090-0 | DOI Listing |
Alzheimers Dement
December 2024
The University of Arizona - Tucson, Tucson, AZ, USA.
Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland.
Purpose: Graves' disease (GD) and Graves' orbitopathy (GO) are multifactorial disorders with links to the gut microbiome and autoimmunity. It is observed that patients with GD exhibit altered gut microbiome diversity. However, little is known about the role of oral microbiota in GD and GO.
View Article and Find Full Text PDFBackground: Peripheral metabolic health status can reflect and/or contribute to the risk of Alzheimer's disease (AD). Peripheral metabolic health status can be indicated by metabolic health markers, such as inflammatory biomarker glycoprotein acetyls (GlycA) and specific components of lipoproteins (e.g.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Massachusetts Chan Medical School, Worcester, MA, USA.
Background: Alzheimer's disease (AD) is the most common type of dementia which results in debilitating memory loss as the disease advances. However, among older adults with AD, some may experience rapid cognitive decline while others may maintain a stable cognitive status for years. In addition to the amyloid plaques, tau tangles, and neuronal inflammation characteristic of AD, there is strong evidence of dysregulation in the peripheral immune system, including decreased naïve T cells and increased memory T cells among older adults with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Medicine, Duke University, Durham, NC, USA.
Background: The GI tract is home to approximately 70% of the body's immune cells, >100 million enteric neurons, and ∼40 trillion bacteria. This co-localization of myriad immune, neural and bacterial cells creates complex interactions that regulate almost every tissue in the body, including the brain. Importantly, peripheral and GI inflammation occur in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer (AD) contributing to gut brain axis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!