OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals.

Ann Rheum Dis

Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK.

Published: March 2021

Objectives: To collate the genes experimentally modulated in animal models of osteoarthritis (OA) and compare these data with OA transcriptomics data to identify potential therapeutic targets.

Methods: PubMed searches were conducted to identify publications describing gene modulations in animal models. Analysed gene expression data were retrieved from the SkeletalVis database of analysed skeletal microarray and RNA-Seq expression data. A network diffusion approach was used to predict new genes associated with OA joint damage.

Results: A total of 459 genes were identified as having been modulated in animal models of OA, with ageing and post-traumatic (surgical) models the most prominent. Ninety-eight of the 143 genes (69%) genetically modulated more than once had a consistent effect on OA joint damage severity. Several discrepancies between different studies were identified, providing lessons on interpretation of these data. We used the data collected along with OA gene expression data to expand existing annotations and prioritise the most promising therapeutic targets, which we validated using the latest reported associations. We constructed an online database OATargets to allow researchers to explore the collated data and integrate it with existing OA and skeletal gene expression data.

Conclusions: We present a comprehensive survey and online resource for understanding gene regulation of animal model OA pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892386PMC
http://dx.doi.org/10.1136/annrheumdis-2020-218344DOI Listing

Publication Analysis

Top Keywords

animal models
12
gene expression
12
expression data
12
genes associated
8
joint damage
8
modulated animal
8
data
8
genes
5
gene
5
oatargets knowledge
4

Similar Publications

Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.

Apoptosis

January 2025

Department of Breast Cancer Surgery, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, No. 519 Beijing East Road, Nanchang, Jiangxi, 330029, China.

Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Immunotherapy, a promising therapeutic approach, often faces challenges due to the immunosuppressive tumor microenvironment. This study explores the innovative use of CRISPR-Cas9 technology in conjunction with FCPCV nanoparticles to target and edit the C-C Motif Chemokine Ligand 5 (CCL5) gene, aiming to improve the efficacy of breast cancer immunotherapy.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

High-density lipoprotein nanoparticles spontaneously target to damaged renal tubules and alleviate renal fibrosis by remodeling the fibrotic niches.

Nat Commun

January 2025

College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.

Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!