Microbially-driven sulfur cycling is a vital biogeochemical process in the sulfur-rich mangrove ecosystem. It is critical to evaluate the potential impact of sulfur transformation in mangrove ecosystems. To reveal the diversity, composition, and structure of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) and underlying mechanisms, we analyzed the physicochemical properties and sediment microbial communities from an introduced mangrove species (Sonneratia apetala), a native mangrove species (Kandelia obovata) and the mudflat in Hanjiang River Estuary in Guangdong (23.27°N, 116.52°E), China. The results indicated that SOB was dominated by autotrophic Thiohalophilus and chemoautotrophy Chromatium in S. apetala and K. obovata, respectively, while Desulfatibacillum was the dominant genus of SRB in K. obovata sediments. Also, the redundancy analysis indicated that temperature, redox potential (ORP), and SO were the significant factors influencing the sulfur cycling microbial communities with elemental sulfur (ES) as the key factor driver for SOB and total carbon (TC) for SRB in mangrove sediments. Additionally, the morphological transformation of ES, acid volatile sulfide (AVS) and SO explained the variation of sulfur cycling microbial communities under sulfur-rich conditions, and we found mangrove species-specific dominant Thiohalobacter, Chromatium and Desulfatibacillum, which could well use ES and SO, thus promoting the sulfur cycling in mangrove sediments. Meanwhile, the change of nutrient substances (TN, TC) explained why SOB were more susceptible to environmental changes than SRB. Sulfate reducing bacteria produces sulfide in anoxic sediments at depth that then migrate upward, toward fewer reducing conditions, where it's oxidized by sulfur oxidizing bacteria. This study indicates the high ability of SOB and SRB in ES, SOS and S generation and transformation in sulfur-rich mangrove ecosystems, and provides novel insights into sulfur cycling in other wetland ecosystems from a microbial perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.128597 | DOI Listing |
Adv Sci (Weinh)
December 2024
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.
Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Intensive Care Unit, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China.
High-altitude pulmonary edema (HAPE) is a life-threatening altitude sickness afflicting certain individuals after rapid ascent to high altitude above 2500 m. In the setting of HAPE, an early diagnosis is critical and currently based on clinical evaluation. The aim of this study was to utilize the metabolomics to identify the altered metabolic patterns and potential biomarkers for HAPE.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.
View Article and Find Full Text PDFBioTech (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova, 119991 Moscow, Russia.
The white poplar () is a dioecious woody plant with significant potential for the phytoremediation of soils. To realize this potential, it is necessary to utilize growth-promoting microorganisms. One potential source of such beneficial microorganisms is the rhizosphere community of wild-growing trees.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.
Symbiotic interactions drive species evolution, with nutritional symbioses playing vital roles across ecosystems. Chemosynthetic symbioses are globally distributed and ecologically significant, yet the lack of model systems has hindered research progress. The giant ciliate and its sulfur-oxidizing symbionts represent the only known chemosynthetic symbiosis with a short life span that has been transiently cultivated in the laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!