Background: The nematode worm, Caenorhabditis elegans, is a saprophytic species that has been emerging as a standard model organism since the early 1960s. This species is useful in numerous fields, including developmental biology, neurobiology, and ageing. A high-quality comprehensive molecular interaction network is needed to facilitate molecular mechanism studies in C. elegans.

Results: We present the predicted functional interactome of Caenorhabditis elegans (FIC), which integrates functional association data from 10 public databases to infer functional gene interactions on diverse functional perspectives. In this work, FIC includes 108,550 putative functional associations with balanced sensitivity and specificity, which are expected to cover 21.42% of all C. elegans protein interactions, and 29.25% of these associations may represent protein interactions. Based on FIC, we developed a gene set linkage analysis (GSLA) web tool to interpret potential functional impacts from a set of differentially expressed genes observed in transcriptome analyses.

Conclusion: We present the predicted C. elegans interactome database FIC, which is a high-quality database of predicted functional interactions among genes. The functional interactions in FIC serve as a good reference interactome for GSLA to annotate differentially expressed genes for their potential functional impacts. In a case study, the FIC/GSLA system shows more comprehensive and concise annotations compared to other widely used gene set annotation tools, including PANTHER and DAVID. FIC and its associated GSLA are available at the website http://worm.biomedtzc.cn .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7574172PMC
http://dx.doi.org/10.1186/s13062-020-00271-6DOI Listing

Publication Analysis

Top Keywords

predicted functional
12
caenorhabditis elegans
12
differentially expressed
12
expressed genes
12
functional
10
functional interactome
8
interactome caenorhabditis
8
web tool
8
protein interactions
8
gene set
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!