To avoid the upset of nitrification process in wastewater treatment plants, monitoring of influent toxic chemicals is essential for stable operation. Toxic chemical compounds can interfere with the biological nitrogen removal, thus affecting plant efficiency and effluent water quality. Here we report the development of fluorescence and bioluminescence bioassays, based on E. coli engineered to contain the promoter region of ammonia oxidation pathway (AmoA1) of Nitrosomonas europaea and a reporter gene (lux or gfp). The fluorescence or bioluminescence signal was measured with newly designed optical devices. The microbial sensors were tested and validated at different concentrations of nitrification-inhibiting compounds such as allylthiourea, phenol, and mercury. The signal decrease was immediate and proportional to inhibitor concentration. The developed bacterial bioassays could detect the inhibition of the nitrification process in wastewater for allylthiourea concentrations of 1 μg/L for E.coli pMosaico-Pamo-gfp and 0.5 μg/L for E.coli pMosaico-Pamo-luxAB. The results were confirmed using water from a wastewater plant, containing nitrification-inhibiting compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121438DOI Listing

Publication Analysis

Top Keywords

nitrification process
12
process wastewater
8
fluorescence bioluminescence
8
nitrification-inhibiting compounds
8
microbial sensor
4
sensor platform
4
platform based
4
based bacterial
4
bacterial bioluminescence
4
bioluminescence luxab
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!