The dynamics of pseudo-spin-1/2 Bose-Einstein condensates with weak spin-orbit coupling through a moving obstacle potential are studied numerically. Four types of wakes are observed and the phase diagrams are determined for different spin-orbit coupling strengths. The conditions to form Bénard-von Kármán vortex street are rather rigorous, and we investigate in detail the dynamical characteristics of the vortex streets. The two point vortices in a pair rotate around their center, and the angular velocity and their distance oscillate periodically. The oscillation intensifies with increasing spin-orbit coupling strengths, and it makes part of the vortex pairs dissociate into separate vortices or combine into single ones and destroys the vortex street in the end. The width b of the street and the distance l between two consecutive vortex pairs of the same circulation are determined by the potential radius and its moving velocity, respectively. The b/l ratios are independent of the spin-orbit coupling strength and fall in the range 0.19-0.27, which is a little smaller than the stability criterion 0.28 for classical fluids. Proper b/l ratios are necessary to form Bénard-von Kármán vortex street, but the spin-orbit coupling strength affects the stability of the street patterns. Finally, we propose a protocol to experimentally realize the vortex street in ^{87}Rb spin-orbit-coupling Bose-Einstein condensates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.032217 | DOI Listing |
J Voice
January 2025
Department of Statistics, Purdue University, Mathematical Sciences Building, 150 N. University Street, Room 231, West Lafayette, IN 47907.
Background: Methods to elicit the vital capacity (VC) include forced vital capacity (FVC) and slow vital capacity (SVC). Because the FVC maneuver can be affected by air trapping or inefficiencies in lung emptying vs. the SVC, the SVC-FVC difference may be substantial and diagnostically meaningful in elderly individuals and patients with respiratory obstruction.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center of New Material and Green Chemistry, Khazar University, 41 Mehseti Street, Baku AZ1096, Azerbaijan; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
This paper introduces an innovative technique for extracting pesticides from herbal infusions using a core-shell magnetic adsorbent (i.e., Cu-BTC@FeO) where achieving a notable enrichment factor for the target pesticides by coupling with a dispersive liquid-liquid microextraction method.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
Iron oxide nanoparticles were synthesized using a vortex microfluidic system and subsequently functionalized with a primary shell of salicylic acid, recognized for its ability to increase the stability and biocompatibility of coated materials. In the second stage, the vortex platform was placed in a magnetic field to facilitate the growth and development of a porous silica shell. The selected drug for this study was micafungin, an antifungal agent well regarded for its effectiveness in combating fungal infections and identified as a priority compound by the World Health Organization (WHO).
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Biology, Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA.
Fish in the wild often contend with complex flows that are produced by natural and artificial structures. Research into fish interactions with turbulence often investigates metrics such as turbulent kinetic energy (TKE) or fish positional location, with less focus on the specific interactions between vortex organization and body swimming kinematics. Here, we compared the swimming kinematics of rainbow trout (Oncorhynchus mykiss) holding station in flows produced by two different 3×5 cylinder arrays.
View Article and Find Full Text PDFChaos
December 2024
Institute of Continuous Media Mechanics, UB RAS, Academician Korolev Street 1, Perm 614013, Russia.
The known analytical solution describing a two-dimensional viscous flow with vortices under a driving force is generalized. It is shown that a periodic pattern of asymmetric vortices arises when the force amplitude exceeds a critical value. The transport of an ensemble of passive particles through the resulting structure has been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!