Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent experimental results indicate that mixing is enhanced by a reciprocal flow induced inside a levitated droplet with an oscillatory deformation [T. Watanabe et al., Sci. Rep. 8, 10221 (2018)2045-232210.1038/s41598-018-28451-5]. Generally, reciprocal flow cannot convect the solutes in time average, and agitation cannot take place. In the present paper, we focus on the diffusion process coupled with the reciprocal flow. We theoretically derive that the diffusion process can be enhanced by the reciprocal flow, and the results are confirmed via numerical calculation of the over-damped Langevin equation with a reciprocal flow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.033109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!