Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Significant advances have recently been made in modeling chaotic systems with the reservoir computing approach, especially for prediction. We find that although state prediction of the trained reservoir computer will gradually deviate from the actual trajectory of the original system, the associated geometric features remain invariant. Specifically, we show that the typical geometric metrics including the correlation dimension, the multiscale entropy, and the memory effect are nearly identical between the trained reservoir computer and its learned chaotic systems. We further demonstrate this fact on a broad range of chaotic systems ranging from discrete and continuous chaotic systems to hyperchaotic systems. Our findings suggest that the successfully reservoir computer may be topologically conjugate to an observed dynamical system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.033314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!