We analyze the isotropic compaction of mixtures composed of rigid and deformable incompressible particles by the nonsmooth contact dynamics approach. The deformable bodies are simulated using a hyperelastic neo-Hookean constitutive law by means of classical finite elements. We characterize the evolution of the packing fraction, the elastic modulus, and the connectivity as a function of the applied stresses when varying the interparticle coefficient of friction. We show first that the packing fraction increases and tends asymptotically to a maximum value ϕ_{max}, which depends on both the mixture ratio and the interparticle friction. The bulk modulus is also shown to increase with the packing fraction and to diverge as it approaches ϕ_{max}. From the micromechanical expression of the granular stress tensor, we develop a model to describe the compaction behavior as a function of the applied pressure, the Young modulus of the deformable particles, and the mixture ratio. A bulk equation is also derived from the compaction equation. This model lays on the characterization of a single deformable particle under compression together with a power-law relation between connectivity and packing fraction. This compaction model, set by well-defined physical quantities, results in outstanding predictions from the jamming point up to very high densities and allows us to give a direct prediction of ϕ_{max} as a function of both the mixture ratio and the friction coefficient.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.032904DOI Listing

Publication Analysis

Top Keywords

packing fraction
16
mixture ratio
12
compaction mixtures
8
deformable particles
8
function applied
8
compaction
5
deformable
5
mixtures rigid
4
rigid highly
4
highly deformable
4

Similar Publications

Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.

View Article and Find Full Text PDF

Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction.

View Article and Find Full Text PDF

Current Positron Studies on the Modifications of the Molecular Packing in Green-Based Polymers Through Changes in the Synthesis Procedures or Environmental Conditions.

Polymers (Basel)

December 2024

Positron Group "Prof. Alfredo Dupasquier", Faculty of Exact Sciences, Tandil Institute of Materials Physics (IFIMAT), National University of the Center of the Buenos Aires Province (UNCPBA), Pinto 399, 7000 Tandil, Argentina.

The sensitivity of positron annihilation characteristics to changes in the molecular packing in network-forming polymers has been demonstrated since the early 1980s. Positron annihilation lifetime spectroscopy (PALS) is a unique technique that can provide direct information on the free volume in polymers through the experimental parameters of the free volume hole distribution, their mean value, and volume fraction. This knowledge is currently applied for PALS investigations on the main processes that govern the molecular organization in some green polymers when subjected to different synthesis procedures or environmental conditions (humidity, physical aging, temperature).

View Article and Find Full Text PDF

The effects of aging treatment and the volume fraction of precipitation particles on the nano-hardness and nano-indentation morphology of Ni-based single crystal superalloys are systematically investigated. Using nano-indentation tests and atomic force microscopy (AFM), this study examined the mechanical properties and related physical mechanisms of Ni-based superalloys that have two volume fractions of precipitation particles and four aging treatment times. Results analyzed using the Oliver-Pharr method indicate that prolonging the aging time or increasing the volume fraction of particles enhances the nano-hardness and creep resistance of Ni-based single crystal superalloys and reduces the indentation-affected area.

View Article and Find Full Text PDF

The theory of Barlow packings: Basic properties and cohesive energies from exact lattice summations within the sticky hard-sphere model.

J Chem Phys

January 2025

Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study (NZIAS), Massey University Albany, Private Bag 102904, Auckland 0745, New Zealand.

The theory of periodic Barlow multi-lattices (X1X2…XN)∞ with Xi ∈ {A, B, C} and Xi ≠ Xi+1 of stacked two-dimensional hexagonal close-packed layers is presented and used to derive exact lattice sum expressions in terms of fast converging Bessel function expansions for inverse power potentials. We describe in detail the mathematical properties of Barlow sphere packings and demonstrate that only two basic lattice sums are required to describe all periodic packings. For the sticky hard-sphere model with an attractive inverse power law potential, we find a linear correlation between the cohesive energies of different Barlow packings and the face-centered cubic packing fraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!