Effects of metal nanoparticles on freshwater rotifers may persist across generations.

Aquat Toxicol

Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

Published: December 2020

Nanotechnology has become one of the fastest growing industries in the current century because nanomaterials (NMs) are present in an ever-expanding range of consumer products increasing the chance of their release into natural environments. In this study, the impacts of two metal nanoparticles (Ag-NPs and CuO-NPs) and their equivalent ionic forms (Ag and Cu) were assessed on the lentic freshwater rotifer Brachionus calyciflorus and on its ability to adapt and recover through generations. In our study, Ag-NPs and CuO-NPs inhibited the rotifer population growth rate and caused mortality at low concentrations (< 100 μg L). Ag-NPs and CuO-NPs decreased in the medium when organisms were present (48 h exposure: 51.1 % and 66.9 %, respectively), similarly Ag and Cu also decreased from medium in presence of the organisms (48 h: 35.2 % and 47.3 %, respectively); although the metal concentrations removed from the medium were higher for nanoparticles than metal ions, metal ions showed higher effects then their respective nanoparticle forms. Rotifer populations exposed for 4 generations to the toxicants were able to recover the population growth rate, but some rotifers showed developmental delay and inability to reproduce even after the removal of the toxicants. Intracellular accumulation of reactive oxygen species as well as plasma membrane damage were found in the rotifers at concentrations corresponding to EC (Ag-NPs = 1.7 μg L, Ag = 4.5 μg L, CuO-NPs = 46.9 μg L, Cu = 35 μg L) of the population growth rate. Our results showed, for the first time, that effects of metal nanoparticles and metal ions on rotifer populations may persist along several generations. This should be taken into account when assessing risks of metal nanoparticles in freshwaters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2020.105652DOI Listing

Publication Analysis

Top Keywords

metal nanoparticles
16
ag-nps cuo-nps
12
population growth
12
growth rate
12
metal ions
12
effects metal
8
persist generations
8
decreased medium
8
nanoparticles metal
8
rotifer populations
8

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Nanotechnology has emerged as a revolutionary domain with diverse applications in medicine, and one of the noteworthy developments is the exploration of bacterial magnetosomes acquired from magnetotactic bacteria (MTB) for therapeutic purposes. The demand for natural nanomaterials in the biomedical field is continuously increasing due to their biocompatibility and eco-friendly nature. MTB produces uniform, well-ordered magnetic nanoparticles inside the magnetosomes, drawing attention due to their unique and remarkable features.

View Article and Find Full Text PDF

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!