A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimal stimulation site for rTMS to improve motor function: Anatomical hand knob vs. hand motor hotspot. | LitMetric

Optimal stimulation site for rTMS to improve motor function: Anatomical hand knob vs. hand motor hotspot.

Neurosci Lett

Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea; Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. Electronic address:

Published: January 2021

Repetitive transcranial magnetic stimulation (rTMS) is used to modulate neuronal excitability of the human brain. Distant effects on contralateral corticomotor excitability can be exerted by interhemispheric modulation by low-frequency rTMS on ipsilateral hemisphere. To modulate corticospinal excitability, accurate determination of the stimulation site is important to maximize the effects of rTMS. In the present study, we investigated the difference in the distant effect of 1 Hz rTMS with respect to inducing functional improvement in the non-dominant hand by inhibiting the dominant hemisphere depending on cortical target areas. Ten healthy right-handed volunteers without any neurological disorders were enrolled. The anatomical hand knob (HK) identified from individual magnetic resonance imaging and the transcranial magnetic stimulation (TMS) induced hand motor hotspot (hMHS) by recording motor evoked potentials (MEPs) in the contralateral first dorsal interosseous muscle were determined. All participants underwent three conditions of 1 Hz rTMS on left hemisphere intervention; rTMS application over the HK, rTMS application over the hMHS, and sham-rTMS. Before and after each intervention, all participants undergone motor function assessments with their left hand. The cortical mapping showed that the hMHS was located anteriorly and laterally compared to the HK. Motor function tests showed the most significant improvements after the hMHS stimulation. When we compared the distant effects of target site on corticospinal excitability and motor behavior, delivering 1 Hz rTMS to the hMHS was more effective than delivering it to the HK for improving corticomotor excitability, motor skill, and dexterity. These results suggest that TMS-induced hMHS is an optimal target area to induce distant effect of low-frequency rTMS in motor function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2020.135424DOI Listing

Publication Analysis

Top Keywords

motor function
16
rtms
10
motor
9
stimulation site
8
anatomical hand
8
hand knob
8
hand motor
8
motor hotspot
8
transcranial magnetic
8
magnetic stimulation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!