In 2008, a proposal for assessing the risk of induction of skin sensitization to fragrance materials Quantitative Risk Assessment 1 (QRA1) was published. This was implemented for setting maximum limits for fragrance materials in consumer products. However, there was no formal validation or empirical verification after implementation. Additionally, concerns remained that QRA1 did not incorporate aggregate exposure from multiple product use and included assumptions, e.g. safety assessment factors (SAFs), that had not been critically reviewed. Accordingly, a review was undertaken, including detailed re-evaluation of each SAF together with development of an approach for estimating aggregate exposure of the skin to a potential fragrance allergen. This revision of QRA1, termed QRA2, provides an improved method for establishing safe levels for sensitizing fragrance materials in multiple products to limit the risk of induction of contact allergy. The use of alternative non-animal methods is not within the scope of this paper. Ultimately, only longitudinal clinical studies can verify the utility of QRA2 as a tool for the prevention of contact allergy to fragrance materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yrtph.2020.104805DOI Listing

Publication Analysis

Top Keywords

fragrance materials
20
skin sensitization
8
quantitative risk
8
risk assessment
8
risk induction
8
aggregate exposure
8
contact allergy
8
fragrance
6
materials
5
updating exposure
4

Similar Publications

Assessment of Silver-Copper Co-Loaded Mesoporous Bioactive Glass as an Advanced Pulp-Capping Material.

J Dent

December 2024

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Objectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.

Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, 1-tetradecanol, CAS Registry Number 112-72-1.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Update to RIFM fragrance ingredient safety assessment, methyl 2-nonynoate, CAS Registry Number 111-80-8.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Update to RIFM fragrance ingredient safety assessment, dihydro-β-ionol, CAS Registry Number 3293-47-8.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

RIFM fragrance ingredient safety assessment, 3-hexenoic acid, CAS Registry Number 4219-24-3.

Food Chem Toxicol

December 2024

Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), , Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!