Water-soluble photoreactive polymers with both phosphorylcholine and benzophenone groups were synthesized for the reaction between the polymers and the substrate in aqueous medium. To control the polymer architecture, the living radical polymerization method was applied to the copolymerization of 2-methacryloyloxyethyl phosphorylcholine and benzophenone methacrylates. These polymers possess various architectures, such as linear polymers, polymers with hydrophobic terminals, and 4-armed star-like polymers, that could promote their adsorption on the substrate surfaces. Additionally, two types of benzophenone groups were examined. Due to the bulky phosphorylcholine group, tetra(ethylene oxide) group as a spacer between polymer main chain and benzophenone group was considered. These polymers could adsorb on the surface in an aqueous medium, followed by reaction on the surface photoirradiation depending on the chemical structure of the benzophenone group. The thickness of the polymer layer depended on the polymer architecture, i.e. a polymer with a hydrophobic terminal could form a thick layer. After modification, the contact angle by air in the aqueous medium decreased, compared to that on the base substrate. This was due to the hydrophilic nature based on the phosphorylcholine groups at the surface. The amount of proteins adsorbed on the surface also decreased because of the surface modification. These findings indicated that these water-soluble photoreactive polymers could be applied for the safer and effective surface modification of substrates conventional photoirradiation without using an organic solvent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2020.1839340 | DOI Listing |
Eur J Pharm Sci
January 2025
University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia. Electronic address:
Dry eye disease is a multifactorial condition characterized by a loss of homeostasis of the tear film. Among the various treatment approaches, the application of ophthalmic oil-in-water nanoemulsions with incorporated anti-inflammatory drugs represents one of the most advanced approaches. However, the liquid nature of nanoemulsions limits their retention time at the ocular surface.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Nanotec-CU Center of Excellence on Food and Agriculture, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
The bromination of α-oxo ketene dithioacetals using KBr/HO, catalyzed by vanadium chloroperoxidase (VCPO), has been successfully demonstrated. A comparative study of enzymatic processes "on water" "in water", using 2 wt% of the surfactant TPGS-750-M revealed that the in-water protocol not only provides higher yields but also accommodates a broader substrate scope. This bromination method in an aqueous micellar medium enabled the preparation of brominated α-oxo ketene dithioacetals in fair to excellent yields (23 examples).
View Article and Find Full Text PDFLangmuir
January 2025
Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Lipid-coated oxygen microbubbles (OMBs) are being investigated for biomedical applications to alleviate hypoxia such as systemic oxygenation and image-guided radiosensitization therapy. Additionally, they hold potential for boarder application as oxygen carriers beyond the biomedical filed. Understanding the stability and oxygen release properties of OMBs in dynamic aqueous environments is critical for these applications.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Nanotech Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Changsari, Kamrup 781101, Assam, India. Electronic address:
The application of mesoporous silica nanoparticles (MSN) as a drug carrier system got immense attention in the past few years due to their exceptional high drug loading efficiency. However, the process of drug loading is quite challenging compared to other lipid-based drug delivery systems. Hence, the MSNs using different catalysts were synthesized, and their mesoporous material characteristic was confirmed by the type IV adsorption-desorption isotherm using BET analyzer.
View Article and Find Full Text PDFLangmuir
January 2025
Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan.
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!