Purpose: Fibroblast growth factor (FGF) 21 is a circulating hormone with metabolic regulatory importance. In mice, FGF21 increases in response to a ketogenic diet and fasting. In humans, a similar increase is only observed after prolonged starvation. We aim to study the acute effects of ketone bodies on circulating FGF21 levels in humans.
Methods: Participants from three randomized, placebo-controlled crossover studies, with increased endogenous or exogenous ketone bodies, were included. Study 1: patients with type 1 diabetes (T1D) (n = 9) were investigated after a) insulin deprivation and lipopolysaccharide (LPS) injection and b) insulin-controlled euglycemia. Study 2: patients with T1D (n = 9) were investigated after a) total insulin deprivation for 9 hours and b) insulin-controlled euglycemia. Study 3: Healthy adults (n = 9) were examined during a) 3-hydroxybutyrate (OHB) infusion and b) saline infusion. Plasma FGF21 was measured with immunoassay in serial samples.
Results: Circulating OHB levels were significantly increased to 1.3, 1.5, and 5.5 mmol/l in the three studies, but no correlations with FGF21 levels were found. Also, no correlations between FGF21, insulin, or glucagon were found. Insulin deprivation and LPS injection resulted in increased plasma FGF21 levels at t = 120 min ( = .005) which normalized at t = 240 min.
Conclusion: We found no correlation between circulating FGF21 levels and levels of ketone bodies. This suggests that it is not ketosis which controls FGF21 production, but instead a rather more complex regulatory mechanism.
Trial Registration: clinicaltrials.gov ID number: Study 1: NCT02157155 (5/6-2014), study 2: NCT02077348 (4/3-2014), and study 3: NCT02357550 (6/2-2015).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07435800.2020.1831015 | DOI Listing |
Diabetol Metab Syndr
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Background: Structural heart disease is one of the leading causes of death in people with type 2 diabetes (T2D), which is not known to have an effect on exercise training. The aim of this study was to compare the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on heart tissue structure, the serum level of FGF21 and the heart tissue level of β-Klotho, an FGF21 coreceptor, in HFD and HFD + STZ-induced diabetic mice.
Methods: Thirty-six male C57BL/6J mice were divided into high-fat diet (HFD) and normal chow diet (ND) groups.
Diabetes Obes Metab
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
Background: Given the potential role of brown adipose tissue (BAT) in stimulating energy expenditure, activating BAT can be an effective anti-obesity treatment. Here, we aimed to use adenoviruses to establish the effect of the inducible degrader of the low density lipoprotein receptor (IDOL) in the formation of BAT.
Methods: IDOL or green fluorescent protein was overexpressed by adenovirus and injected into the scapula of C57BL/6J mice and fed with high-fat diet for 12 weeks.
J Cancer
January 2025
Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, West Wenhua Rd. 107, Jinan 250012, China.
Glioblastoma multiforme (GBM) is one of the most common brain malignancies characterized by an inflammatory microenvironment and metabolic reprogramming. This study aims to investigate the causal relationship between inflammatory factors (IFs) and GBM, as well as the potential mediating effects of specific plasma metabolites. We used a bidirectional two-sample Mendelian randomization (MR) approach to investigate the causal associations between 91 IFs and GBM.
View Article and Find Full Text PDFLife Sci
December 2024
College of Medicine and Health Sciences, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China. Electronic address:
Background: Fibroblast Growth Factor 21 (FGF21) is a naturally occurring peptide hormone involved in the regulation of glycolipid metabolism, and it shows promise as a potential treatment for type 2 diabetes mellitus (T2DM). However, the short half-life and poor pharmacokinetics of native FGF21 limit its efficacy in reducing hyperglycemia in vivo. Therefore, maintaining stable and sustained blood concentrations of FGF21 is crucial for its role as an effective regulator of glycolipid metabolism in vivo.
View Article and Find Full Text PDFInflammation
December 2024
Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, No.127 Changle West Road, Xi'an, 710032, China.
Fibroblast growth factor 21 (FGF21) modulates the inflammatory response in a range of pathological conditions. However, whether FGF21 modulates asthma remains unexplored. This study sought to investigate its function in asthma using an ovalbumin (OVA)-induced mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!