Swine manure valorization in fabrication of nutrition and energy.

Appl Microbiol Biotechnol

Department of Statistics, University of Malakand, Chakdara, Dir (L) 18800, Pakistan.

Published: December 2020

Renewable energy can boost the growing population's need and rapid budgetary development. To reduce fossil fuel consumption is the initial purpose of renewable and sustainable energy, producing valuable bio-based products. The fermenters, using for pretreatment of swine manure, and involvement of swine carcasses are reported to enhance organic loading rate followed by improved biogas yield on household digesters. The compositions such as animal residues, pathogenic microbes, pharmaceutical residues and nutrient compositions including undigested feed are still confused. Therefore, it is mandatory to optimize and stabilize anaerobic practice and digestate filtration purification for consequential fertilizer consumption. The effective bio-methane recovery from energy-rich compounds is challenging due to slow degradation procedures. The pretreatment procedure could enhance lipid depolymerization and improve anaerobic fermentation. This article deeply focuses on biodegradation of swine manure. The components of this manure were evaluated and established several approaches to improve biogas production. Furthermore, recycling of co-digestates was discussed in detail as fertilizer consumption including hygienic aspects of manure and pretreatment strategies of biomass residues. KEY POINTS: • Co-digestion of manure and carcasses enhance bio-methane production. • Removel of ammonia from biogas digester may improve bio-methane gas. • A strong antimicrobial influence has been reported on biogas production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-10963-8DOI Listing

Publication Analysis

Top Keywords

swine manure
12
fertilizer consumption
8
biogas production
8
manure
5
swine
4
manure valorization
4
valorization fabrication
4
fabrication nutrition
4
nutrition energy
4
energy renewable
4

Similar Publications

Migration and risk assessment of heavy metals from swine manure in an organic fertilizer - soil - ryegrass - rex rabbit system: Based on field trials.

Sci Total Environ

January 2025

Lab of Animal Ecology and Environmental Control, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, PR China. Electronic address:

Organic fertilizers were produced through maggot-composting (MC) and natural composting (NC) using swine manure, and the migration, contamination, and health risks of heavy metals (Zn, Cu, Cd, Cr, Pb) were evaluated within a fertilizer - soil - ryegrass - Rex rabbit system. After 70 days of treatment, heavy metals were concentrated by 43.23 % to 100 % in MC and 52.

View Article and Find Full Text PDF

Attenuated cadmium and arsenic enrichment in rice by co-application of organic composting and chemical fertilization.

Sci Rep

December 2024

College of Resources and Environment, Department of Environment Science and Engineering, Southwest University, Chongqing, 400715, China.

A pot experiment was conducted on arsenic (As) and cadmium (Cd) co-contaminated soil to discern the influence of varying proportions of pig manure compost (PM) vis-à-vis chemical fertilizers (NPK) on the mitigation of Cd and As absorption by rice. Our findings illustrated that by increasing the PM proportions from 25 to 100%, it manifested a statistically significant reduction in the mobilized fractions of Cd, accounting for up to 77% reduction in soil CaCl-Cd concentrations. Conversely, the NaHCO-As reactions were contingent on the distinct PM application rates.

View Article and Find Full Text PDF

[Sorption and Transport of Antibiotics in Manured Upland Agricultural Soils].

Huan Jing Ke Xue

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.

Sorption and transport are important environmental behaviors of antibiotics in soils and can determine the fate of antibiotics in environments; however, limited relevant studies have been conducted on long-term manured soils. In this study, batch and repacked soil column experiments were conducted to examine the sorption and transport behavior of four veterinary antibiotics, including sulfamethazine (SMT), florfenicol (FFC), doxycycline (DOX), and enrofloxacin (ENR), in red soils, yellow soils, and calcareous soils with long-term amendment of chicken or pig manure collected in Zhejiang Province. The results showed that the sorption isothermal data of the four target antibiotics all conformed well to the linear and Freundlich models.

View Article and Find Full Text PDF

Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade.

Environ Pollut

December 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou, 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:

The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.

View Article and Find Full Text PDF

Regulation of dietary nutrient fractions to control the release of labile manure pollutants in swine production remains a challenge. Feeding trials were conducted to assess the impact of dietary nutrient fractions on labile manure composition and pollution potential in pigs at different growth stages. The pigs were selected based on age (weaning = 60 days, feeding = 100 days, and finishing = 160 days), health, and average body weight (23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!