Acaricide resistance is one of the greatest threats to sustainable and effective control of vector ticks worldwide. The amitraz resistance status in cattle tick, Rhipicephalus microplus populations collected from 18 districts of Punjab in north-western India were characterized using bioassay and molecular assays. The modified larval packet test was used and the resistance factors (RF) against amitraz for the field populations were in the range of 0.36-4.85, indicating level I resistance status in ten populations. Characterization of a partial segment of the octopamine/tyramine (OCT/Tyr) receptor gene of R. microplus field populations from Punjab revealed a total of 18 nucleotide substitutions in the coding region out of which 5 were non-synonymous substitutions. Three of these non-synonymous substitutions (T8P, V15I and A20 T) were earlier reported in American and South African populations of R. microplus. Among the two single nucleotide polymorphisms (A22C-T8P; T65C-L22S) potentially linked to amitraz resistance in American, South African and Zimbabwean resistant populations, only the T8P substitution was recorded from the Barnala population. The PCR-RFLP assay using EciI restriction enzyme was used for genotyping of the larvae as homozygous resistant (RR), homozygous susceptible (SS) and heterozygous (SR). Genotyping of 514 larval DNA samples from 18 field populations revealed 92.8 % larval population as SR and the remaining 7.2 % as RR genotypes. The percentage of resistant alleles in the tick populations was 53.6 (range 50.0-57.2) indicating its moderate distribution in the region. The present study is the pioneer report establishing the hypothesis that amitraz-resistance is recessively inherited and heterozygous individuals show phenotypic susceptibility to the drug in the Indian tick populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ttbdis.2020.101578 | DOI Listing |
Front Antibiot
April 2024
Transmission, Reservoir and Diversity of Pathogens Unit, Institut Pasteur, Les Abymes, France.
Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.
Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.
Sci Rep
January 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada.
View Article and Find Full Text PDFMed Vet Entomol
October 2024
Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil.
Pest Manag Sci
January 2025
Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
Background: The acaricide amitraz is now used intensively in many regions to control the honey bee parasite, Varroa destructor, because of the reduced efficacy of pyrethroids and coumaphos caused by resistance evolution. The continued application of amitraz in recent years exerts a very high selection pressure on mites, favouring the evolution of resistance to this acaricide. Mutations N87S and Y215H in the β2-adrenergic-like octopamine receptor (Octβ2R), target site of amitraz, have been already associated with resistance to amitraz in France and the USA, respectively.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2024
Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!