Perspectives of photodynamic therapy in biotechnology.

J Photochem Photobiol B

Molecular and Cellular Oncology Research Group, Cancer Biotechnology Laboratory, Technological Development Center, Federal University of Pelotas, Pelotas, Brazil. Electronic address:

Published: December 2020

Photodynamic therapy (PDT) is a current and innovative technique that can be applied in different areas, such as medical, biotechnological, veterinary, among others, both for the treatment of different pathologies, as well as for diagnosis. It is based on the action of light to activate photosensitizers that will perform their activity on target tissues, presenting high sensitivity and less adverse effects. Therefore, knowing that biotechnology aims to use processes to develop products aimed at improving the quality of life of human and the environment, and optimizing therapeutic actions, researchers have been used PDT as a tool of choice. This review aims to identify the impacts and perspectives and challenges of PDT in different areas of biotechnology, such as health and agriculture and oncology. Our search demonstrated that PDT has an important impact around oncology, minimizing the adverse effects and resistance to chemotherapeutic to the current treatments available for cancer. Veterinary medicine is another area with continuous interest in this therapy, since studies have shown promising results for the treatment of different animal pathologies such as Bovine mastitis, Malassezia, cutaneous hemangiosarcoma, among others. In agriculture, PDT has been used, for example, to remove traces of antibiotics of milk. The challenges, in general, of PDT in the field of biotechnology are mainly the development of effective and non-toxic or less toxic photosensitizers for humans, animals and plants. We believe that there is a current and future potential for PDT in different fields of biotechnology due to the existing demand.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2020.112051DOI Listing

Publication Analysis

Top Keywords

photodynamic therapy
8
adverse effects
8
pdt
7
biotechnology
5
perspectives photodynamic
4
therapy biotechnology
4
biotechnology photodynamic
4
therapy pdt
4
pdt current
4
current innovative
4

Similar Publications

Self-Sustained Biophotocatalytic Nano-Organelle Reactors with Programmable DNA Switches for Combating Tumor Metastasis.

Adv Mater

January 2025

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.

Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.

View Article and Find Full Text PDF

Hydrogen-Bonded Organic Framework Nanoscintillators for X-Ray-Induced Photodynamic Therapy in Hepatocellular Carcinoma.

Adv Mater

January 2025

Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.

X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!