The heterogeneous and anisotropic articular cartilage is generally studied as a layered structure of "zones" with unique composition and architecture, which is difficult to recapitulate using current approaches. A novel hybrid bioprinting strategy is presented here to generate zonally stratified cartilage. Scaffold-free tissue strands (TSs) are made of human adipose-derived stem cells (ADSCs) or predifferentiated ADSCs. Cartilage TSs with predifferentiated ADSCs exhibit improved mechanical properties and upregulated expression of cartilage-specific markers at both transcription and protein levels as compared to TSs with ADSCs being differentiated in the form of strands and TSs of nontransfected ADSCs. Using the novel hybrid approach integrating new aspiration-assisted and extrusion-based bioprinting techniques, the bioprinting of zonally stratified cartilage with vertically aligned TSs at the bottom zone and horizontally aligned TSs at the superficial zone is demonstrated, in which collagen fibers are aligned with designated orientation in each zone imitating the anatomical regions and matrix orientation of native articular cartilage. In addition, mechanical testing study reveals a compression modulus of ≈1.1 MPa, which is similar to that of human articular cartilage. The prominent findings highlight the potential of this novel bioprinting approach for building biologically, mechanically, and histologically relevant cartilage for tissue engineering purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7677219PMC
http://dx.doi.org/10.1002/adhm.202001657DOI Listing

Publication Analysis

Top Keywords

articular cartilage
16
zonally stratified
12
hybrid bioprinting
8
bioprinting zonally
8
human articular
8
cartilage
8
cartilage scaffold-free
8
scaffold-free tissue
8
tissue strands
8
novel hybrid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!