Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein FANCC.

EMBO Rep

Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego, La Jolla, CA, USA.

Published: December 2020

Zika virus (ZIKV) is an emerging flavivirus, which when passed through vertical transmission from mother to developing fetus can lead to developmental abnormalities, including microcephaly. While there is mounting evidence that suggests a causal relationship between ZIKV infection and microcephaly, the mechanisms by which ZIKV induces these changes remain to be elucidated. Here, we demonstrate that ZIKV infection of neural stems cells, both in vitro and in vivo, induces macroautophagy to enhance viral replication. At the same time, ZIKV downregulates a number of essential selective autophagy genes, including the Fanconi anemia (FA) pathway genes. Bioinformatics analyses indicate that the transcription factor E2F4 promotes FANCC expression and is downregulated upon ZIKV infection. Gain and loss of function assays indicate that FANCC is essential for selective autophagy and acts as a negative regulator of ZIKV replication. Finally, we show that Fancc KO mice have increased ZIKV infection and autophagy protein levels in various brain regions. Taken together, ZIKV downregulates FANCC to modulate the host antiviral response and simultaneously attenuate neuronal growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726779PMC
http://dx.doi.org/10.15252/embr.201949183DOI Listing

Publication Analysis

Top Keywords

zikv infection
16
selective autophagy
12
zikv
9
zika virus
8
fanconi anemia
8
zikv downregulates
8
essential selective
8
fancc
5
virus depletes
4
depletes neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!