Galectin-1 production is elevated in hypertrophic scar.

Wound Repair Regen

Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia, USA.

Published: January 2021

Upon healing, burn wounds often leave hypertrophic scars (HTSs) marked by excess collagen deposition, dermal and epidermal thickening, hypervascularity, and an increased density of fibroblasts. The Galectins, a family of lectins with a conserved carbohydrate recognition domain, function intracellularly and extracellularly to mediate a multitude of biological processes including inflammatory responses, angiogenesis, cell migration and differentiation, and cell-ECM adhesion. Galectin-1 (Gal-1) has been associated with several fibrotic diseases and can induce keratinocyte and fibroblast proliferation, migration, and differentiation into fibroproliferative myofibroblasts. In this study, Gal-1 expression was assessed in human and porcine HTS. In a microarray, galectins 1, 4, and 12 were upregulated in pig HTS compared to normal skin (fold change = +3.58, +6.11, and +3.03, FDR <0.01). Confirmatory qRT-PCR demonstrated significant upregulation of Galectin-1 (LGALS1) transcription in HTS in both human and porcine tissues (fold change = +7.78 and +7.90, P <.05). In pig HTS, this upregulation was maintained throughout scar development and remodeling. Immunofluorescent staining of Gal-1 in human and porcine HTS showed significantly increased fluorescence (202.5 ± 58.2 vs 35.2 ± 21.0, P <.05 and 276.1 ± 12.7 vs 69.7 ± 25.9, P <.01) compared to normal skin and co-localization with smooth muscle actin-expressing myofibroblasts. A strong positive correlation (R = .948) was observed between LGALS1 and Collagen type 1 alpha 1 mRNA expression. Gal-1 is overexpressed in HTS at the mRNA and protein levels and may have a role in the development of scar phenotypes due to fibroblast over-proliferation, collagen secretion, and dermal thickening. The role of galectins shows promise for future study and may lead to the development of a pharmacotherapy for treatment of HTS.

Download full-text PDF

Source
http://dx.doi.org/10.1111/wrr.12869DOI Listing

Publication Analysis

Top Keywords

migration differentiation
8
galectin-1 production
4
production elevated
4
elevated hypertrophic
4
hypertrophic scar
4
scar healing
4
healing burn
4
burn wounds
4
wounds leave
4
leave hypertrophic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!