Background: The adulteration of milk by hazardous chemicals like surfactants has recently increased. It conceals the quality of the product to gain profit. As milk and milk-based products are consumed by many people, novel analytical procedures are needed to detect these adulterants. This study focused on Fourier-transform infrared (FTIR) spectroscopy equipped with an attenuated total reflection (ATR) accessory, and near-infrared (NIR) spectroscopy for the determination of milk-surfactant adulteration using a genetic algorithm (GA) coupled with multivariate methods. The model surfactant was sodium dodecyl sulfate (SDS), and its concentration varied from 1.94-19.4 gkg in adulterated samples.

Results: Prominent peaks in the spectral range of 5500-6400 cm , 1160-1260 cm and 1049-1080 cm may correspond to the sulfonate group in SDS. A genetic algorithm could significantly reduce the number of variables to almost one third by selecting the specific wavenumber region. Principal component analysis (PCA) for ATR and NIR data indicated separate clusters of samples in terms of the concentration level of SDS (P ≤ 0.05). Partial least squares regression (PLSR) was used to determine the maximum R value for ATR and NIR data for calibration, cross-validation and prediction, which were 0.980, 0.972, 0.980, and 0.970, 0.937, and 0.956 respectively. The results showed apparent differences between unadulterated and adulterated samples using partial least squares-discriminant analysis (PLS-DA), which was validated by the permutation test.

Conclusion: The results clearly show the successful application of the proposed methods with multivariate analysis in the selection of variables, classification, clustering, and identification of the adulterant in amounts as low as 1.94 gkg in milk. © 2020 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.10894DOI Listing

Publication Analysis

Top Keywords

genetic algorithm
12
multivariate methods
8
milk-surfactant adulteration
8
attenuated total
8
total reflection
8
atr nir
8
nir data
8
application genetic
4
algorithm multivariate
4
methods detection
4

Similar Publications

Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.

View Article and Find Full Text PDF

This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencing (snRNA-seq), and scPagwas (pathway-based polygenic regression framework) methods to explore the genetic links between UDIPs and GBM. Two-sample Mendelian randomization analyses were conducted to identify causal relationships between UDIPs and GBM.

View Article and Find Full Text PDF

Spatial transcriptomics enhances our understanding of cellular organization by mapping gene expression data to precise tissue locations. Here, we present a protocol for using weighted ensemble method for spatial transcriptomics (WEST), which uses ensemble techniques to boost the robustness and accuracy of existing algorithms. We describe steps for preprocessing data, obtaining embeddings from individual algorithms, and ensemble integrating all embeddings as a similarity matrix.

View Article and Find Full Text PDF

Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates.

View Article and Find Full Text PDF

To undertake a mixed-methodology implementation study to improve the well-being of men with gastrointestinal late effects following radical radiotherapy for prostate cancer. All men completed a validated screening tool for late bowel effects (ALERT-B) and the Gastrointestinal Symptom Rating Score (GSRS); men with a positive score on ALERT-B were offered management following a peer reviewed algorithm for pelvic radiation disease (PRD). Health-related quality of life (HRQoL) at baseline, 6 and 12 months; and healthcare resource usage (HRU) and patient, support-giver, staff experience and acceptability of staff training (qualitative analysis) were assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!