AI Article Synopsis

  • - The study investigated the anti-quorum sensing (AQS) and antibiofilm effects of ethyl acetate extracts from a Gram-negative bacterium associated with chronic human infections, specifically focusing on how these extracts affect acyl-homoserine lactone (AHL)-regulated molecules.
  • - Researchers found that specific concentrations of the extracts significantly decreased violacein pigment production, AHL levels, exopolysaccharide (EPS) production, and biofilm formation compared to a control group.
  • - Chemical analysis revealed that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester had the strongest interaction with the CviR protein, suggesting it could be a potential treatment option

Article Abstract

() is a Gram-negative, rod-shaped facultatively anaerobic bacterium implicated with recalcitrant human infections. Here, we evaluated the anti-QS and antibiofilm activities of ethyl acetate extracts of () on the likely inactivation of acyl-homoserine lactone (AHL)-regulated molecules in both by in vitro and in silico analyses. Our investigations showed that the sub-MIC levels were 2, 1, and 0.5 mg/mL, and the concentrations showed a marked reduction in violacein pigment production by 75.8, 64.6, and 35.2%. AHL quantification showed 72.5, 52.2, and 35.9% inhibitions, inhibitions of EPS production (72.8, 36.5, and 25.9%), and reductions in biofilm formation (90.7, 69.4, and 51.8%) as compared to a control. Light microscopy and CLSM analysis revealed dramatic reduction in the treated biofilm group as compared to the control. GC-MS analysis showed 20 major peaks whose chemical structures were docked as the CviR ligand. The highest docking score was observed for hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester bonds in the active site of CviR with a binding energy of -8.825 kcal/mol. Together, we found that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester remarkably interacted with CviR to inhibit the QS system. Hence, we concluded that hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester of could likely be evaluated for treating infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557254PMC
http://dx.doi.org/10.1021/acsomega.0c02483DOI Listing

Publication Analysis

Top Keywords

hexadecanoic acid
12
acid 2-hydroxy-1-hydroxymethyl
12
2-hydroxy-1-hydroxymethyl ethyl
12
ethyl ester
12
biofilm formation
8
compared control
8
inhibition quorum
4
quorum sensing
4
sensing biofilm
4
formation fruit
4

Similar Publications

The present study reports the ability of a fungal isolate DY1, obtained from rotten wood, to degrade alkali lignin (AL) and lignocelluloses in an efficient manner. The efficiency of degradation was monitored by measuring the percentage of decolorization and utilizing GC-MS for identifying degradation products at different time intervals (10, 20, 30, and 40 days). The optimal degradation of alkali lignin (AL) was achieved at 0.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.

Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.

View Article and Find Full Text PDF

LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36.

Pharmacol Res

December 2024

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes.

View Article and Find Full Text PDF

Increased phosphorylation of AMPKα1 S485 in colorectal cancer and identification of PKCα as a responsible kinase.

Cancer Lett

December 2024

Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

Article Synopsis
  • The study investigates how phosphorylation of AMPKα1 at S485 affects colon cancer cells and identifies PKCα as the responsible kinase.
  • The results indicate that S485 phosphorylation is higher in colorectal cancer tissues compared to normal ones and is linked to increased cell growth and migration.
  • The research highlights that PKCα plays a key role in this phosphorylation, as its inhibition reduces S485 phosphorylation and impacts cancer cell behaviors under various nutritional conditions.
View Article and Find Full Text PDF
Article Synopsis
  • Diabetic kidney disease (DKD) is a major cause of kidney failure, largely due to damage in podocytes, which are essential for kidney function.
  • Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key player in protecting cells from oxidative stress, making it a promising target for DKD therapies.
  • The study found that DDO-1039, a new Nrf2 activator, improved kidney health in diabetic mice by reducing podocyte injury, lowering blood sugar levels, and decreasing inflammation, endorsing its potential as a treatment for DKD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!