Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants.

Addit Manuf

W. M. Keck Biomedical Materials Research Lab, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.

Published: December 2020

Cobalt-chromium (CoCr) alloys are used in load-bearing implants due to their excellent wear resistance. However, poor tissue-material interactions can originate due to the release of wear and corrosion-induced Co and Cr ions, motivating the use of surface modification to reduce such phenomena. Premixed feedstock powders of CoCrMo + 2 wt.% tricalcium phosphate (TCP, CoCr) and CoCrMo + 2 wt.% tricalcium phosphate + 4 wt.% AlO (CoCr) were used to surface coat CoCr alloy via Laser Engineered Net Shaping (LENS™) with the objective of increasing CoCr alloy's wear resistance. Electron micrographs of the microstructure revealed the dissociation of intergranular globular carbide phases and reprecipitation into a finer network-like microstructure with homogeneous distribution of Co and Cr. X-ray diffraction (XRD) spectra revealed texturing or preferential crystallographic orientation amongst the LENS™ processed materials, with the TCP added CoCr displaying some ε-phase stabilization. Tribological testing resulted in an 82.3% and 71.6% decrease in wear rate and wear coefficient, respectively, for CoCr when compared to commercially available CoCr alloy. Additionally, tribofilm development was observed for the fabricated samples via an increase in contact resistance. The current study resulted in not only a decrease in wear volume but also a decrease in the overall degradation of the coated CoCr alloy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561001PMC
http://dx.doi.org/10.1016/j.addma.2020.101553DOI Listing

Publication Analysis

Top Keywords

cocr alloy
16
tricalcium phosphate
12
cocr
10
load-bearing implants
8
wear resistance
8
cocrmo wt%
8
wt% tricalcium
8
tcp cocr
8
decrease wear
8
wear
6

Similar Publications

Assessment of mechanical properties and microstructure of Co-Cr dental alloys manufactured by casting, milling, and 3D printing.

J Prosthet Dent

December 2024

Associate Professor, Dental Biomaterials Research Laboratory, Department of Restorative Dentistry, Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada. Electronic address:

Statement Of Problem: The mechanical properties and microstructure of cobalt chromium (Co-Cr) alloys should be considered when choosing the best alloy for each clinical situation. More information is needed on the digital manufacturing methods of metals in dentistry, such as computer numerical control (CNC), and direct laser metal sintering (DMLS).

Purpose: The aim of this study was to investigate the effect of the 3 different Co-Cr manufacturing processes on the mechanical properties and microstructure of Co-Cr dental alloys.

View Article and Find Full Text PDF

Evaluation of the shear bond strength of surface-treated Cobalt-Chromium metal crowns on corticobasal® implant abutments cemented using different luting agents.

J Stomatol Oral Maxillofac Surg

December 2024

Reader, Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.. Electronic address:

Purpose: This in-vitro study aimed to compare the shear bond strength (SBS) of cobalt-chromium (Co-Cr) crowns on Corticobasal® implant abutments, evaluating the effects of two surface treatments and two luting agents.

Materials And Methods: Thirty Co-Cr crowns were fabricated using CAD-CAM technology with a direct metal laser sintering process and divided into three groups based on surface treatment: Group I (untreated), Group II (sandblasted with 50 μm Al₂O₃), and Group III (Er: YAG laser etching). Each group was further subdivided based on luting cement: Sub group A (GC Fuji Plus) and Sub group B (Rely X U200).

View Article and Find Full Text PDF

Background: The purpose of this study was to evaluate the efficacy of selective laser sintering (SLS) against the traditional casting method in fabricating customized Co-Cr dental posts, employing 3D coordinate metrology for analysis.

Methods: A 10 mm post space was prepared in a transparent acrylic block using a red ParaPost XP drill (1.25 mm diameter).

View Article and Find Full Text PDF

Residual stresses and anisotropic structures characterize laser powder bed fusion (L-PBF) products due to rapid thermal changes during fabrication, potentially leading to microcracking and lower strength. Post-heat treatments are crucial for enhancing mechanical properties. Numerous dental technology laboratories worldwide are adopting the new technologies but must invest considerable time and resources to refine them for specific requirements.

View Article and Find Full Text PDF

Legislative framework addresses the issues of alloy corrosion, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding the development of new biomaterials. The aim of this research was to evaluate and compare the ion release of standard dental alloys and their hypoallergenic equivalents. Six types of orthodontic alloy wires (nickel-titanium (NiTi), coated NiTi, stainless steel (SS), Ni-free SS, and cobalt-chromium (CoCr) and titanium-molybdenum (TMA) were immersed into artificial saliva of pH 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!